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Chapter Three

A MIXING MODEL WITH ZERO INTELLIGENCE TRADERS
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1 Introduction

The characterization of trader behavior may be the most difficult task for theanalysis
of markets. Thetradinginstitution can be characterized as having a definite structure, a set
of rules, and a history; whilethe actions of trader participantsmight be thought of as based
on mental abilities. Gode & Sunder (1993) examine the zero intelligence (ZI) benchmark
which modelstraders’ activity as if they followed a simple non-strategic algorithm. The
algorithm instructs tradersto submit random bids and asks as long as these orders would
result in a profitabletrade if a transaction were to take place. Easley & Ledyard (1993)
show that trading model populated with avariation of theseZI tradersachieves surprising
efficiency allowing the traders to extract a high percentage of the potential trade surplusin a
double auction market. More complex theoretica models includethose of Wilson (1987)
and Friedman (1991). These models require greater computational skillson the part of
traders. The volume edited by Friedman and Rust (1993) includes an overview of
theoretical and experimental work on this subject.

Theresultsof simulationsby Gode and Sunder demonstratethat ZI traderscan serve
as a useful benchmark for trader behavior in double auction markets under various
ingtitutional rules governing trade execution. Whilethis perspective on trader behavior has
been useful to theresearcher, strategic traders themselvesmay gain a better perspective by
assuming other traders act as ZI traders. The market institution considered is a double
auction market with common values where traders are asymmetrically informed. We
assume only onetrader approachesthe market strategically to avoid strategic recursions. It
is then shown that a single strategic trader could use the assumption of ZI to identify the
behavior of informed and uninformed tradersin this market. Once the trader types are
identified, the strategic trader could properly weight the actions of the informed trader and
uninformed trader. By categorizing actions accordingto trader type, a strategictrader can
make better use of the available information in the market.

In a market considered, the informed group of traders receivesa more precise price
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signal than an uninformed group. Each set of signalsis drawn from aNormal distribution
around thetrueworth of theasset. Theindividual signalsare privateinformationwhilethe
structureof thesignal generation mechanism is common information. If each trader bases
a market order on private information, it can be shown that the resulting prices alone will
not reveal the private information of tradersdue to the non-linearity of thesignal and price
relation. Thisis dueto thefact that signalsare drawn from two uniquedistributions, and
prices do not identify the distribution of the associated signals.

The key to the problemis the observation that a mix of Normal distributions results
in adistributionwhich is not Normally distributed. This observation leads to interesting
results. If the observed market price were based entirely on price signals which were
drawn from two Normal distributionsrather than a single Normal distribution, the result
would be that price would not be Normally distributed. It follows that conventional
forecasting techniques predicting the conditional expected mean value of price given past
prices cannot be used becausethe model does not have an error structurewhichis Normal.
Estimates from misspecifying the model as havinga Normal error structure will be biased
(see dso Chapter 1). Classifying pricesaccording to trader type under the ZI assumption
is equivalent to identifying the distribution from which the price signal is drawn. Knowing
the components of the mix of Normals allows a trader to avoid the non-linear estimation
problem, and allows unbiased predictions of the true asset worth.

In what follows, the empirical work on the distribution of pricesand pricechangesis
reviewed. Models which assume a mixed Normal structure are then discussed. A
technique for estimating a mixed model through a variation of maximum likelihood
estimation, the estimation maximum likelihood technique, is then introduced. This is
followed by the estimation of a mixture model under the zero intelligenceassumption. The
data used is from the experimental sessions discussed in Chapter 2. The last section

concludes.
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2 Empirical Studies of the Distribution of Prices

The characterization of the distribution of security returns has been of interest to
researchers back to at least to the timeof Bachelier (1900). Empirical studiesof historical
security returns data show convincingly that returns are not Normally distributed. Clark
(1973) isan important reference. An example of extensive empirical work is Friedman and
Vandersteel (1980) where daily spot foreign exchange prices from 1973 to 1979 are
characterized. It was found that while returns tend to be symmetric, the kurtosis
coefficient of these returns was much larger than what would be expectedfor a Normal
distribution. Taylor (1985) describes datafor 15 US stocks, a foreign stock index, 6
metals, the dollar/sterling spot rate, and futures on commodities and exchange rates. For
the period examined, often exceeding ten years of daily observations, itisfound again that
the coefficient of kurtosis for these returns exceed the value of 3, the level at which these
returns could be considered Normally distributed.

A second feature of security returnsis that volume and price changes are positively
related. (see, e.g., survey by Karpoff (1987)) Volumehas been considered to be the
driving processin pricevariability. Clark (1973) describes varianceof pricesand volume
as having a curvilinear (nonlinear) relation, and demonstrates how this might be modeled
as a subordinated stochastic process. The base process is the random arrival of new
information. The secondary process is the observed price sequence. Using the price
series alone, price changes are found not to be Normally distributed. However, using
volume to better estimate the arrival of new information, kurtosis is reduced to levels
comparable to those expected under Normal distributions. Volumeisalso used to explain
price variations by Blume, Easley & O'Hara(1994) where the absolute value of prices
changes and volumeare positively related. Conrad, Hameed, and Niden (1994) find that
abnormal volumeis related to return autocovariancesin an empirical study of equities.

Wang (1994) also finds a relation between price changes and volume in his recent

! Explanations for non-Normal returns have included the description of returns as subordinated
processes or as a mixture of distributions. See Titterington, Smith, Makov for explanation of non-
Normality of mixtures of Normals as a corollary of identifiability. p. 39.
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theoretical model.

A third feature of security pricesis the observed variance heterogeneity of returns
over time. The variance of observed price changes has been modeled as having been
generated by a mixtureof Normals. Observed trading volume has been used to identify
thismixture by Tauchenand Pitts (1983), where a bivariate Normal mixturemode is used
to describe the relation of volume with the variance of price changes. This allows the
determination of a conditional distribution of pricechanges given volume. Their model is
then used to study the relation of volume and open interest to the volatility of pricesin 3-

month T-bill futures contracts.

3  The Estimation Maximum Likelihood Algorithm

3.1 Background

The estimation maximum likelihood (EM) algorithm as amethod of solution to finite
mixturedensitiesis related to Fisher’s method of scoring (see, e.g., Fisher (1935)). The
application of the EM algorithm to estimatethe components of a multivariate Normal
mixturewas proposed by Day (1969), although maximum likelihood estimation of mixture
density problemshad been discussed in other work in the 1960s according to Redner and
Walker (1984). This method was proposed as an improvement to the more difficult
estimation by the methodsof momentsfirst introduced by Pearson (1894). An extensive
evaluation of the method is found in Dempster, Laird, and Rubin (1977). Green (1984)
discusses how this method compares to the method of iteratively reweighted |east squares.
Titterington, Smith, and Makov (1985) discuss finite mixture models in general along
various techniques and procedures including EM.

Finite mixture models are relatively common in the economic literature. The
switching regression model discussed by Goldfeld & Quandt (1972) might be considered a

type of finite mixture model; although in this case, the resulting maximum likeihood
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problemwas solved by non-linear estimation methodsother than EM. As was seen in the
previous section, mixture models have also been used to explain the distribution of price
changes by assuming the price sequence contains a subordinated process. Recent
examples of the method include estimation of the joint distributionof prices and voldtility
(Danielsson (1994)), and partially adaptive regression models (Phillips (1994)).

Finite mixturemodels are also related to latent variable problems in that the variable
identifying the mixture is often unobserved. Aitkin and Wilson (1980) review this
approach to identify outliers in a mixed sample of “good and bad” observationsin a
sample. Their work serves as a simpleintroduction to the method and will demonstrate
how the EM method will be used to identify a mix of “good and not so good” market
prices.

Given a sampleof independent observations, yq to yy, itisassumed that a subset
of these observationsdo not reflect thetrue population. The probability model consists of
the true distribution and an alternate distribution along with a mixing proportion. The

combined density function (from Aitkin and Wilson) is

f(y) =(P)(f(y)) + (1 -p)(f(y))

where f1() and fo() canbeany density function. Normal density functionswith equa

variances and unique means are used for this example.

- _ 1 (v _11)2 2
f JﬁceXp( (Yy—m)"/20%)

The parameters of the model are estimated by maximum likelihood and yield solutions,

p=3 P(1]y)/n
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n=XyPily) [ TPy =12

=T {(y-m)*Pily)t [ n =12

where P() is the probability estimatefor an observation to belong to one or the other
subgroups. This estimate derivesfrom thelikelihood ratio of the subgroups and is defined

as
P(11y)=p flyi) / {p fulys) + (1~ p) B(yi) }

Theestimation of themodel proceedsin similar way to reiteratively reweighted |east
squares. Initial estimates of P() arechosen, then the loglikelihood equation is maximized
for each parameter.? These parameter estimatesare used to adjust P() and theloglikelihood
equation is again maximized. The algorithm continues, aternating betweenthe estimation
of the probability for each observation and the maximization of the loglikelihood equation,
until convergenceis reached. Thecriteriafor convergence may be either that the value of
thelikelihood equation ceasesto improvefor some toleranceor that the parameter estimates
stabilize for some predetermined tolerance.

Darwin’s observations of heights of pairs of plants (Zea Mays) which were either
self-pollinated or cross-pollinated has been used as sample data for techniquesto detect
outliersby Box and Tiao (1968) and Abraham and Box (1978). Aitkin and Wilson (1980)
demonstrate how the EM algorithm can be used classify observations into two
distributions: a true distribution and an outlier distribution. The original Darwin data
discussed in Fisher (1935) is reproduced in Appendix A. A SAS/IML implementation of
the EM algorithm is shown in Appendix B aong with the resultsfor the Darwin data. The

> According to adiscussion in Everitt & Hand (1981), the estimation is not extremely sensitive to the
initial estimates of the parameters. Also, it has been shown that for a univariate function, the likelihood
value increases monotonically over iterations of the EM algorithm.
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supposed outliers in the data are -67 and -48 which represent in eights of inches the
difference between crossed and self-pollinated plant heights. All of the remaining
differencesin plant height are positive.

The results after 6 iterationsare also reported in Appendix B. These results match
the resultsfound in Aitkin and Wilson. The final loglikelihood valueis 143 and the mean
of theoutlier distribution is -57 whereas the mean of the supposed true distributionis 33.
The probability that each of the negative observations may be classified as belongingto the
outlier distributionis greater than .99 while the probability that any other observation may

be classified as an outlier isless than .01.

3.2 Assat market smulation

Before applying the EM techniqueto experimental data, the techniqueis applied to
simulated data to demonstrate how the algorithm performs under ideal conditions. The
experimental Irmkt sessions used two Normal distributionswith same means and unique
variances (see Chapter 2). For this simulation, two distributionswill be used where the
mean of each distribution is $2.50, while the standard deviation is 10¢ for one distribution,
and 50¢ for the second. These values are comparableto the momentsused as signalsin
the experimenta sessions. The two distributions arethen mixed and the EM algorithm is
applied to estimate the moments of each distribution. The identification of each
observation predicted by the estimationis then compared with the true identity of each
observation. This simulation might be described as allowing one trader to observe the
signals for all of the traders, then estimating the mean value of the signals and the
corresponding precisions.

Theresultsof thesimulationareshown in Appendix C. Each sub sampleof themix
was comprised of 30 draws.® Theestimated proportion of eachsignal is.42 vs. theactud
value of .50. The mean of eachgroup of signalsis2.485 and 2.518 vs. the actual values
of 2.485 and 2.532. The estimated precision for each group is .109 and .408 vs. the

* Although the draws were made from a Normal distributions defined by identical means of 2.50 and
standard deviations of .50 or .10, the actual sample moments were used for the comparison.
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actual valuesof .109 and .442. The estimated classificationsof the observationsis aso
shown. The observations were sorted after the estimation: the first 30 observationsbelong
to the first group, and the remaining 30 belong to the second group. Many of the
predictionsfor thefirst group have probabilitiesof greater than.75 indicatingthat thereis a
high probability that these observations belong to the first group. The mean absolute
deviation of the predicted probabilitiesvs. actual group classification is .429, indicating
moderate predictive ability.

3.3 Information Criteria

Prediction of individual market orders is one measure of the usefulness of this
model. Another criterionis how well the model explains the distribution of observed
market orders. An increasein the information about the classification of market orders
presumably allows atrader to better understand the underlying price process. Information
in maximum likelihood estimation problems is usually measured by the Fisher information
matrix (see, e.g., Green (1993)). Using the notation of Titterington, Smith, and Makov

(1985), the Fisher information matrix for n observationsis

n1(y) = E[Dy £() Dy L(W)"],

where ) isavector of parameters, L(W) is the loglikelihood equation, and Dy, is the

first derivativewith respect to the parametersin the vector . Sincethe expected value of
thisexpression is difficult to calculate, an alternative estimator of theinformation matrixis
oftenused. Thisis

ni(g) = —E[D§ L(¥)],
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where (|, theestimatesof theloglikelihood equation at its maximum, replacethe expected

actual values. It is awell known property of the maximum likelihood techniquethat the
inverse of the information matrix provides the asymptotic covariance matrix for the
estimates. The detailsof this calculation of this matrix for the Darwin data are shown in
Appendix B*.

Theinformation matrix may be interpreted as how much of the availableinformation
from the observations are captured in the model specification. This matrix may also be
compared to a more general specification of the model. Specification testingin maximum
likelihood problems is commonly performed with a loglikelihood ratio test where the
maximized loglikelihood values from both specificationsare compared. Aitkin & Wilson
(1980) remark, however, that for finite mixture problems, theloglikelihood ratiotestis not
valid due to the non-regularity of the model. In common with many latent variable models,
the mixing proportion is not identifiable in the genera (non-mixed) specification.

While the ratio test is not available, the information matrix is still useful.
Titterington, Smith, & Makov (1985) comparethe information matrix associated with a
fully categorized set of observations with information matrix associated with a mixture of
observations. When assuming the fully categorized observations are more informative
than the uncategorized observations, the gain in amount of information can be measured.
This typeof analysismight be thought of asa comparisonof theentropy of two systems.
In the case considered, a single Normal distribution would exhibit a higher quantity of
entropy than an ordered (categorized) system. The relation Tittington, Smith, & Makov

useis

where | istheinformation matrix from afully categorizedmodel, 1, istheinformation

matrix from an uncategorized model, and |g is the information matrix representing the

* Asthe analytical second derivatives are complex, and facilities for computing derivatives are absent
in SAS, the derivatives were computed in Mathamatica and later transferred to the SAS program.
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extrainformation associated from knowing the correct categorization of the observations.
Sinceboth 1 and I, are positive semidefinite matrices when the loglikelihood function is
evaluated at its maximumvalue, the difference of these matrices, | will also be apositive
semidefinite matrix. Additional details are found in Titterington, Smith, & Makov (1985).
Viewing the estimation problem in terms of increasing the amount of information
gathered from a set of observations gives insight into the equilibrium price equation
derivedin therational expectationsmodel of Chapter One. The equilibrium priceequation
was derived by assuming individual traders maximized a negative exponential utility
function subject to a budget constraint to arrive at the individual demand for each trader.
These individual demands were then summed over all traders and a market clearing

condition was imposed so that demand equaled supply. The result was

_ PoWlo + HPF'Y i + (1-WPPY L
Po + MPit + (1-ppf

Pr

where P istheequilibrium pricein period t, the meanand precisionof theinformation

common to both types of tradersis Yo and Po, the proportion of informed tradersis

M, the mean and precision of the signals of the informed and uninformed traders are

Vi, pft and V7, pi.

The equivalenceof the solution of the rational expectationsproblem and the proposed
mixing modelsdescribed hereis a key insight. This equation determining the equilibrium
pricein the rational expectationsmodel can be shown to also be the best linear unbiased
(BLU) estimator of the mean value of a threecomponent mixing model. The propertiesof
thisestimator arediscussed in Bement & Williams(1969 p. 1375). Theimportant quality
of the BLU estimator is that it maximizesthe available information from a set of
observations. It can also be shown that the information derived from the observations

using this estimator will be greater than the information associated with estimators from a
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simpler (non-categorized) model. This increase in information follows the reation
describing the extrainformation (lg) describing the difference between a categorized
model vs. an uncategorized model.

Extending the work of Williams(1967), Bement & Williams(1969) also derive an
approximationfor the variance of the weighted mean of a two component mixing model.
They comparethe finite series expansionsof the estimator when sample datais used with
the finite series expansion of the estimator when the variance of each component
distribution is known. In a sense, this method of approximating the variance of the
estimator measures the information lost when the information describing the categorization
of observations (the variance of each category) isnot available.

Bement & Williams use the variance approximationto comparethe weighted average
estimator to other possible estimators to describe the mean of the mix of observations.
They develop criteriafor selecting the optimal estimator based on the variance of the
weighted average estimator. Thealternate estimatorssuggested by Bement & Williamsare
the average sample mean, the pooled sample mean, and the mean with the smaller variance.

These are

i (y'+v?/2
i. (n]_Vl + n272)/(n1+n2)

lil. Vl(ollnl < Uzlnz)

where O0; and O arethe variances of the two sub samples. It is proven that the

weighted average variance approximation will be a superior estimator compared with these

aternatives when the following inequalities are satisfied

. 4Q < (1/ny + 1/ny)
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i. Q < [ni+(n2/p)]/ (N1 +ny)?

. Q<1/n
where p = 01/ 02, and Q isdefined by
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+

The approximation to the variance of weighted mean estimator is then defined by
adjusting the variance of the first sub sample by the factor defined above. Thisis

OW: onll

where o isthevariance of the mean of the mix.

The variance approximationis useful in terms of a trading model becauseit alows
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the optimal estimator of the mean of a mix of signalsto be identified, and using this
optimal estimator gives the best estimate of the equilibrium price defined in Chapter One.
Themixing model therefore provides two kinds of information: thefirst is classification of
individual observations according to trader type, and the second is an estimate of the
equilibrium price function. The simulations showed that the EM a gorithm performs
reasonably well in predicting the moments of the distributions, and in identifying
individual observations. In the next section, these techniques are applied to actud

experimental market data from Chapter Two.

4  Application to Experimental Data

4.1 Description of the model

Thefollowing model employsthe estimation maximum likelihood (EM) algorithmto
estimatea mix of two typesof signals simply by observing market orders. Each trader
receives only a single private signal at the beginning of a trading period, and each
additional price observation (bid or ask) within the period is considered an additional signal
of unknown precision. The precision of these additional signalsisin fact a mix of two
precisions:. the precisions of informed and uninformed trader. The model identifies the
momentsof each of thedistributionsin this mix, and identifiesthe distribution from which
each price observationis drawn. Asaresult, themodel demonstrateshow larger volumes
of market orders improves the estimation of the precision of signals of the informed
traders, and thereby improves the estimation of equilibriumprices. Volumeis relatedto
the estimation thetrue asset worth in that it measures the number of price observationsand
determines the sample size for the estimation.

Itis assumed that trader behavior can be modeled as Z| in that traders add a random
profit to their signal to determineabid value, and subtract arandom profit to their signal to

determinean ask value. Also, itisassumed that the profit marginscan be consideredto be
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Normally distributed with a positive mean value, and this mean value is the same across
traders. Finaly, it isassumed that the sequenceof market orders is random, and givesno
indication of the type of trader submitting the order.

The observed price sequence of bids and asks in levels given these assumptionsis
therefore modeled as a mix of two distributions and a stable bid-ask spread. The profit
margin for either side of the market will shift the distribution of signals outward away from
the mean value from which the signals are drawn, although the mean value of the both
distributions will be the same. Theresulting sequence of bids levels will then be a mixed
distribution of Normalswith acommon mean, and the sameis trueof the sequence of ask
levels. The mean value of the bid sequence and the ask sequence will not be equal,
although the difference in means will be Normally distributed.

Thefive parametersto be estimated are the mixing proportion for thetwo groups (p),
the means of each groups (pl, “2)' and the variances for each group (01, 02). The

loglikelihood functionis
|Og li = |z [|I’1 [(p) fi (I.J.l, 01) + (1— p) f, (lJ.z, 02)]] .

Once the moments of the two distributions are identified, these distributions are
assigned to either the informed or uninformed group of traders. In order to assign the
distributions it will be assumed that informed traderstypically outbid (outask) uninformed
traders. Thisisequivaentto assuming informed tradersare morelikely to havetheinside
market (the highest bid or lowest ask). Since traders must have the inside market to
completeatrade, and profits can only be earned through transactions, it is to the advantage
of atrader to havethe inside market. It is assumed that the information advantage of the
insiders alowsthem to capture theinside market. Using this assumption, the distribution
with the greater (lesser) mean will be assigned to the bid (ask) of the informed traders.

These assumptions are tested below.
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4.2 Testable Hypothesis

The mixture of distributions (MOD) model is tested on laboratory data according to
two criteria: the identification of market orders and the estimation of equilibrium price. The
null hypothesisis that market orders (either bids or asks) are equally likely from informed
and uninformed traders, and a strategictrader is unable to identify thetype of trader using
market orders. Thealternate hypothesisis that the MOD model allows traders to identify
the typeof trader submitting market orders, and providesan estimation of the equilibrium
price.

Since there are only two types of traders considered, the model is only useful if it
outperforms predictionsby arandom variabledrawn from a binomial distribution. Define
the state as a binary variable where Informed = 1, and uninformed = 0. The expected
value of a single draw from a binomial distribution is ssmply the probability of a success
where success is defined as choosing the correct state. The expected error is the actua
statelessthe expected value. Given that the statetakesonly two values, the expected error
isaways.5. To testthe mixtureof distributionshypothesis, the predictions of the model
will be compared against this benchmark.

It should be noted that rejection of the MOD model does not necessarily imply
rejection of theZl assumption. Tradersmay still be using a ZI strategy to place bids and
offerswhiletheresulting market orders are so similar that the MOD model cannot correctly

identify them.

4.3 Reaults

4.3.1 Test of Normality

The experimental data exhibits market orders which are not Normally distributed.
The Shapiro-Wilk test of Normality is appliedto the observed bids and asks from sessions
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9 through 17 (Table 1). Each side of the market is analyzed independently. On the bid
side, the Normality test for the combinedinformed/uninformed group (group 9) could be
rejected about 77% of thetime indicating that the bids from the mix of traderscould not be
consideredto be Normal. For theinformed biders, the number of timesNormality can be
rejected drops to 61% of the time, and for the uninformed to 60% of thetime. For theask
side, the results are comparable. Normality for the asks of the combined group of
informed/uninformed traders is rejected more often than for the groups considered

independently.

4.3.2 Characterization of Bids and Asks

In Table 2, descriptive statisticsarerun on several timeseries of prices (bid, logbid,
bought, ask, logask sold). Several featuresof thesetime series are apparent. Informed
traderstend to bid higher than uninformed traders and ask below uninformed traders. This
is seenin the mean bid within each period of each session. A paired t-test was run for dl
the periods. The null hypothesis of same means across groups can be rejected at the .01
level for the bid or the ask side.® Session 15 is shown as a sampleof the complete data.
The sameistrueif the log of bids or asksistaken.

The variance of the bids or asks across groups may or may not be the same across
the two groups. A difference in the mean variance was computed for a simple comparison,
then an F-test of the variances was performed taking into account the degrees of freedom
for each group in each period. Theseresults are presented for asample session (Session
15). A summary of the significance of thistest is also shown. For all periods in dl
sessions, the null hypothesis of same variances across groups can be rejected at the 10%
level in about 38% of the periods examined.

For the actual transaction prices (bought or sold), there appears to be littledifference

® Conover (1980) discusses the theory underlying the Shapiro-Wilk test along with aternative
Normality tests. The Univariate Proc in SAS was used to perform the tests reported here.

® The number of observationsis calculated as the number of sessions times the number of periodsin
each session.
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between the two groups in either the mean values or variances. For this reason,
transaction prices were excluded from the data and only market orders (unaccepted bids
and asks) were used.

4.4 Esimates of the model

Exploiting the differencesin the observed behavior of the informed vs. uninformed
traders, afive parameter model (p, mul, mu2, sigmal, sigma2) is compared with asmple
two parameter model (mu, sigma). It is then shown that by assigning the meansin this
model to theinformed and uninformed groups, a strategic trader could do better using this
model than by averaging of all observed prices. Thebuy side and the sell side aremodeled
independently.

Session 16 period 1 is used as an example. The actual mean bid of Group 1
(informedtraders) is 1.76 vs 2.00 for Group 2 (uninformed traders). The model assumes
two Normal distributions with unique means and variances. As shown in Table 3a,
convergence took place after 15 iterations(k=15). Thevalue of the likelihood functionis
given with and without a constant (log(-2* Pi)), as well as the estimated parametersof the
model. The estimated meanfor group 1 of 1.67 compares with theactual mean of 1.76,
and the estimated mean for group 2 of 2.11 compares with the actual mean of 2.00. The
variances are also comparable.

Sinceprobabilitiesfor each observation are given, these are compared with the actua
group classificationof eachobservation. The vector s definesthe predicted probabilities
for each observation. Theerror for each observation is computed and the mean for al 40
observations is given. Since each observation could be considered abinomial draw from
either distribution, the mean error would be .50 if it were equally likely that any
observation belonged to either group. Inthe model, the mean absolute error is .29. Itis
unlikely that this value could be produced by randomly assigning observations to groups.

Themixing model is estimated for all periodsof all sessionsin Table4. For most of

the sessions, the mean absolute deviationis less than .50, indicatingthat the model does
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dlightly better than a binomial draw. Thisimprovement allows the null hypothesis of no
improvement to be rejected, and the alternate MOD hypothesis to be accepted. Results
after the datawere filtered are also reported. Since the mixing model must discriminate
between two groups of data, the model will perform best when these data are distinctly
different while the model will have difficulty when these data arevery similar. A filter is
used to eliminatethe periods where the predicted difference between the datais less than
20¢. Asseenin Table4 thereis an improvementin the predictionsof the mixing model
when thisfilter is used.

4.5 Estimation of Equilibrium Price

Theestimatesof themixing model can now be compared to the expected equilibrium
price. The experimental sessions provided one signal per trader at the beginning of each
period, and traders were split equally between theinformed and uninformed groups. One
method of computing the expected equilibriumpriceis to fully aggregate information by
taking into account each trader’s signal. This method was used in Chapter Two. The
actual market orders, however, were voluntary so sometraders were over represented. A
second method considers only the signals of the activetraders. To calculatethe average
signal for the informed trader, each market order by an informed trader contributes one
observation. The same rule is used to calculatethe average signal for the uninformed
traders. And lastly, while the traders wereinitially assigned equally between the two trader
types, the actual participationrateis used for the proportion of informed and uninformed
traders. The expected equilibriumprice is then calculated according the the equilibrium
price function using the information from one of the above aggregation methods. The
resulting expected equilibrium price can then be used as a benchmark to test the mixing
model.

The estimates of the mixing model provide an estimate of the mean for both types of
traders along with the mixing proportion. The variance approximationis also calculated

and the weighted average mean of the mixing model can be compared to dternative
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estimatorsof the mean of the mix of observationsusing the criteriadiscussed in section
3.3.  An additional estimator was also considered. Since it was found that informed
traderstend to bid higher (ask lower) than the uninformed traders, the largest (smallest) of
the two means was considered as an estimator.

The results of the comparison are shown in Table5 & 6 for each experimenta
session. The actual trader signalsweighted by the actual signal samplevariances are used
as the baseline for the comparison in Table5, and the aggregated information is used for
the comparisonin Table 6. The mean absolute deviation (MAD) of the observed market
price and of each estimator with respect to this benchmark is shown. The MAD for the
optimal estimator usingthe Q criteriadiscussed in section 3.3 isalso shown. For many
of the sessions, the optimal estimator shows a smaller MAD than the observed market
price. The weighted averagemeanis often the best estimator, and the Q criteriaindicates
many caseswhen alternateestimators areoptimal. Thelargest (smallest) of the means for
bids (asks) used as an estimator improves upon all other estimatorsin many of the
sessions. Theseresults support the mixing of distributionshypothesisin that the estimated

of the model provide more information than simply observing price.

5 Discussion

The model of a mixture of Normal distributions presented here allows a role for
volume in each trader’s estimation of the current fundamental. Volume increases the
number of sample observationsin a maximum likelihood estimation, and may improve a
trader’ s estimation of equilibriumprice. Unlike the model of Blume, Easley, & O’ Hara
(1994) volume here might directly enter into the demand function of a strategic trader.

This model is fairly simple, and knowledge of the structure of the market could be
used to enhancethe model. Transaction prices were not used although it is known that
these valuable provide information. The bid side and the ask side are modeled

independently even though the same signal allows each trader to be activeon both sides of
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the market. A more general model which includes both sides of the market in one
estimation might improve the estimation. Another enhancement might consider the
convergenceover time of market pricesto the truevalue. Inour model, price observations
early and late in the period are treatedequally. Alsoit is known that the varianceof price
changes declinesover time, taking thisinto account would allow a better estimation of the
variance of the original signals.

As was seen in the introduction, this type of model has wide applicability. The
resolution of the sources of price variability would be of great importancein all types of
financial markets. Hopefully it has been demonstrated how key structural featuresof a
market such as the observed behavior characteristicsof two types of traders can be

incorporated directly into a mixture of distributions model.
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Appendix A

Darwin Data for Heights of Zea Mays

Pot Number Crossed Self-Fert. Difference
23.5 17.375 6.125
12 20.375 -8.375
21 20 9
. 22 20 8
19.125 18.375 0.75
21.5 18.625 2.875
1. 22.125 18.625 3.5
20.375 15.25 5.125
18.25 16.5 1.75
21.625 18 3.625
23.25 16.25 7
v 21 28 3
22.125 12.75 9.375
23 15.5 7.5
12 18 -6

Notes: Datais reproduced from Fisher (1935). Differencesin plant heights are converted
to eights of an inch for the analysis to correspond with Aitkin & Wilson (1980).
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Appendix B
EM Algorithm in SAS/IML Applied to Darwin Data

Iteration History

K LF2 LF3 SPH M M2 SGS
1 147.3486  119.78044 0.0666667 -67 27.214286 777.35714

2 144.54424 116.9761 0.1098303 -58. 70257 30. 75891 547. 19352
3 143.57921 116. 01105 0.1319683 -57. 26193 32. 821484 400. 06512
4 143.5671  115.99896 0.1335204 -57.34806 32.996127 385. 36988
5 143.5671  115.99895 0. 1335125 -57. 37018 32. 998713 384. 90068

6 143.5671  115.99895 0.1335109 -57. 37141 32.998733 384. 8842

Prediction Probability \Vector

S
0. 9999833 0. 9985557 0.0021495 0.001345 0. 0003291 0. 0002058 0. 0000398
0. 0000315 0.0000123 9. 7255E-6 5. 8111E-7 8.8815E-8 1. 7167E-8 6. 7112E-9
1. 983E-10

Standard Errors of the Estimated Parameters

SPHSE MJI_SE MR SE SGSSE
0. 0879648 14.029329 5. 4484765 3. 6317029

Covariance and Inverse Covariance Matrices

v
-129. 2449 0. 0063644 0. 0049521 0. 0065059
. 0063644 -0.005082 0.000052 0.0003169
. 0049521 0.000052 -0.033687 -0.00014
. 0065059 0.0003169 -0.00014 -0.07584

[eNeNe]

m\veov
. 0077378 0.0097452 0.0011496 0. 0007024
. 0097452 196. 82208 0. 3020679 0. 8227611
. 0011496 0. 3020679 29. 685896 -0. 053506
. 0007024 0.8227611 -0. 053506 13. 189266

[eNeoNeNe)
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Appendix B

Program Listing for Darwin Data

data mainl ;
title "fn:kov.sas - Detection of Qutliers in Darwin Data - O& 1995 ;
input d @;
cards ;

-67 -48 6 8 14 16 23 24 28 29 41 49 56 60 75

proc int ;
use mai nl ;
read all intoy ;
pi = 3.14159265 ;
n = ncol(y’) ;
d =1} ] j(L,n-1,0))" ;
i =j(Ln1) ;

start f(y,m,s) ;

fv = (1/(s*sqrt(2*3.14159265))) *exp( (- (y- mu) ##2) [ (2*s##2)) ;
return(fv) ;

finish ;

)

oo

s
k
I

NI

f 0;

do until ((abs(lf0-1f2)<.00001) | (k>10)) ;

sph = (i*s)/n ;
mul = (y *s)/(i*s) ;
mi2 = (y *(1+(-1*s)))/ (i *(1+(-1)*s)) ;
sg = sart(((((y-mul)##2) *s)+(((y-mu2) ##2) " *(1+(-1)*s)))/n) ;
s = sph*f(y,nul, sg) / (sph*f(y, nul, sg)+(1-sph)*f(y, m2,sg)) ;
1fo =1f2;
[f1 = (sph*f(y, mul, sg) + (1-sph)*f(y, m2,sg)) :
1f2 = -2*(i*log(lf1)) ;
I1f3 =1f2 - (15*1og(2*pi)) ;
k =k +1;
sgs = sg**2 ;
print k 1f2 1f3 sph mul mu2 sgs ;
end ;
s =5 ;
print s ;

* add anal ytical derivatives ;
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start fdll(y, sphes, mules, mi2es, sges, pi )
dill = -((1/ (exp((y - mules)##2/ (2*sges##2)) *(2*pi ) ##(1/ 2) *sges) -
1/ (exp((y - mu2es)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) ##2/
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2))* (2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) ##2) ;
return(dil)
finish

start fd44(y, sphes, nules, nu2es, sges, pi) ;

d44 = - ((((y - nu2es)##2*(1 - sphes))/
(exp((y - nu2es)##2/ (2*sges##2) ) * (2% pi ) ##( 1/ 2) *sges##4) -
(1 - sphes)/

(exp((y - nu2es)##2/ (2*sges##2) ) * (2* pi ) ##( 1/ 2) *sges##2) +
((y - nules)##2*sphes)/
(exp((y - nules)##2/ (2*sges##2)) * (2*pi ) ##( 1/ 2) *sges##4) -
sphes/ (exp((y - mules)##2/ (2*sges##2) ) * (2* pi ) ##( 1/ 2) * sges##2) ) ##2/
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules) ##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) ##2) +
(((y - nmu2es)##4*(1 - sphes))/
(exp((y - nu2es)##2/ (2*sges##2)) * (2% pi ) ##( 1/ 2) * sges##7) -
(5*(y - mu2es)##2*(1 - sphes))/
(exp((y - mu2es) ##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) *sges##5) +
((2/pi)## (1 2)*(1 - sphes))/(exp((y - nu2es)##2/ (2*sges##2)) *sges##3) +
((y - nules)##4*sphes)/
(exp((y - nules)##2/ (2*sges##2)) *(2*pi ) ##( 1/ 2) *sges##7) -
(5*(y - mules)##2*sphes)/
(exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##5) +
((2/pi)##(1/ 2) *sphes) / (exp((y - mules) ##2/ (2*sges##2) ) *sges##3) )/
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mnules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) ;
ret urn(d44)
finish

start fd22(y, sphes, nules, mu2es, sges, pi)
d22 = -((y - mules)##2*sphes##2)/
(2*exp((y - nules) ##2/ sges##2) * pi * sges##6*
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) ##2) +
((y - nules)##2*sphes)/
(exp((y - mules) ##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) * sges##5*
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2)*sges))) -
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges))) ;
return(d22) ;
finish

start fd33(y, sphes, nules, nu2es, sges, pi) ;
d33 = -((y - nu2es)##2*(1 - sphes)##2)/
(2*exp((y - nu2es) ##2/ sges##?2) * pi * sges##6*
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2))* (2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mnules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) ) ##2) +
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((y - nu2es)##2*(1 - sphes))/
(exp((y - mu2es) ##2/ (2*sges##2) ) *( 2* pi ) ##( 1/ 2) * sges##5*
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges))) -
(1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))* (2*pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mules) ##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges))) ;
return(d33) ;
finish

start fd12(y, sphes, nules, nu2es, sges, pi)
di2 = -(((y - mules)*(1/
(exp((y - nules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) -
1/ (exp((y - mu2es) ##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) *sphes) /
(exp((y - nules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) ) ##2)) +
(y - nules)/
(exp((y - nules)##2/ (2*sges##2)) * (2* pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2) ) * (2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges))) ;
return(di2) ;
finish

start fd13(y, sphes, nules, nu2es, sges, pi) ;
d13 = -(((y - mu2es)*(1/
(exp((y - mules)##2/ (2*sges##2)) *(2*pi ) ##(1/ 2) *sges) -
1/ (exp((y - mu2es)##2/ (2*sges##?2) ) *(2*pi ) ##(1/ 2) *sges) ) *(1 - sphes))/
(exp((y - mu2es) ##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - nules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) ) ##2)) -
(y - nu2es)/
(exp((y - mu2es) ##2/ (2* sges##2) ) * ( 2* pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges))) ;
return(di3) ;
finish

start fdl14(y, sphes, nules, nu2es, sges, pi)
d14 = - (((1/ (exp((y - nules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) -
1/ (exp((y - nu2es)##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges) ) *
(((y - nu2es)##2*(1 - sphes))/
(exp((y - mu2es) ##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) *sges##4) -
(1 - sphes)/
(exp((y - mu2es) ##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##2) +
((y - nules)##2*sphes)/
(exp((y - nules)##2/ (2*sges##2))* (2*pi ) ##( 1/ 2) *sges##4) -
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##2)))/
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) ) ##2) +
((y - nules)##2/ (exp((y - mules) ##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##4) -
(y - mu2es)##2/
(exp((y - nu2es)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##4) -
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1/ (exp((y - nules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##2) +
1/ (exp((y - nu2es) ##2/ (2*sges##2) ) * (2% pi ) ##( 1/ 2) *sges##2) ) /
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) ) ;
return(di4) ;
finish

start fd24(y, sphes, nules, nu2es, sges, pi) ;
d24 = -(((y - mules)*sphes*
(((y - nu2es)##2*(1 - sphes))/
(exp((y - mu2es)##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) *sges##4) -
(1 - sphes)/
(exp((y - nu2es)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##2) +
((y - nules)##2*sphes)/
(exp((y - nules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges##4) -
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##2)))/
(exp((y - nules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) ) ##2)) +
((y - nules)##3*sphes)/
(exp((y - mules)##2/ (2*sges##2) ) * (2* pi ) ##( 1/ 2) * sges##6*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2))*(2*pi ) ##(1/ 2)*sges))) -
(3*(y - mules)*sphes)/
(exp((y - nules)##2/ (2*sges##2))* (2* pi ) ##( 1/ 2) * sges#H#4*
((1 - sphes)/(exp((y - mu2es)##2/ (2*sges##2) ) * (2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges))) ;
return(d24) ;
finish ;

start fd34(y, sphes, nules, nu2es, sges, pi)
d34 = -(((y - mu2es)*(1 - sphes)*
(((y - nu2es)##2*(1 - sphes))/
(exp((y - mu2es) ##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) *sges##4) -
(1 - sphes)/
(exp((y - nu2es)##2/ (2*sges##2) ) * (2*pi ) ##( 1/ 2) *sges##2) +
((y - nules)##2*sphes)/
(exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##4) -
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges##2)) )/
(exp((y - mu2es) ##2/ (2*sges##2) ) *(2* pi ) ##( 1/ 2) * sges##3*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - nules)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) ) ##2)) +
((y - nu2es)##3*(1 - sphes))/
(exp((y - mu2es) ##2/ (2* sges##2) ) * ( 2* pi ) ##( 1/ 2) * sges##6*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules) ##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges))) -
(3*(y - mu2es)*(1 - sphes))/
(exp((y - nu2es)##2/ (2*sges##2) ) * (2* pi ) ##( 1/ 2) * sges#H#4*
((1 - sphes)/(exp((y - nu2es)##2/ (2*sges##2))*(2*pi ) ##(1/ 2) *sges) +
sphes/ (exp((y - rmules)##2/ (2*sges##2) ) *(2*pi ) ##(1/ 2) *sges))) ;
return(d34) ;
finish ;

start fd23(y, sphes, nules, nu2es, sges, pi)



d23 = -(exp(-(y - mules)##2/ (2*sges##2) -
(y - mules)*(y - nu2es)*(1 - sphes)*sphes)/
(2*pi *sges##6* ((1 - sphes)/
(exp((y - nu2es)##2/ (2*sges##2)) * (2*pi ) ##( 1/ 2) *sges) +
sphes/ (exp((y - mules)##2/ (2*sges##2) ) *(2*pi ) ##( 1/ 2) *sges) ) ##2) ;
return(d23) ;
finish ;
sundll = 0 ; sumdl2 = 0 ; sumdl3 = 0 ; sumdl4 =0
sund2l = 0 ; sund22 = 0 ; sund23 = 0 ; sunmd24 =0
sumd31 = 0 ; sumd32 = 0 ; sunmd33 =0 ; sund34 =0
sund4l = 0 ; sund42 = 0 ; sund43 = 0 ; sund44 = 0 ;
dom=1ton;
value = y[n] ;
sundll = sundll + fd11(y[nj, sph, nul, nu2, sg, pi)
sundl2 = sumdl1l2 + fd12(y[ni, sph, mul, mu2, sg, pi)
sundl3 = sumdl13 + fd13(y[ni, sph, mul, mu2, sg, pi)
sundl4 = sumdl14 + fd14(y[nj, sph, mul, mu2, sg, pi)
sund22 = sunmd22 + fd22(y[nj, sph, mul, mu2, sg, pi) ;
sund23 = sund23 + fd23(y[ni, sph, mul, mu2, sg, pi)
sund24 = sunmd24 + fd24(y[ni, sph, mul, mu2, sg, pi)
sund33 = sumd33 + fd33(y[n], sph, mul, mu2, sg, pi)
sund34 = sumd34 + fd34(y[nj, sph, mul, mu2, sg, pi) ;
sund44 = sund44 + fd44(y[ni, sph, mul, mu2, sg, pi)
end ;
* initiate matrix then assign values. note synmetry
cov = 1(4)

cov[ 1, 1] =sund11l
cov[ 2, 1] =sumd12
cov[ 3, 1] =sund13
cov[ 4, 1] =sund14

cov[ 1, 2] =sumd12 ;

cov[ 2, 2] =sund22
cov[ 3, 2] =sumi23
cov[ 4, 2] =sumd24 ;

invcov = inv(-cov) ;

sph_se = sqgrt(invcov[1,1]) ;
mul_se = sgrt(invcov[2,2])
mui2_se = sgrt(invcov[3,3])
sgs_se = sqrt(invcov[4,4])

print sph_se nul_se mu2_se sgs_se

print cov
print invcov ;
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cov[ 1, 3] =sund13
cov[ 2, 3] =sund23
cov[ 3, 3] =sund33
cov[ 4, 3] =sumd34

(y - mu2es) ##2/ (2*sges##2) ) *

cov[ 1, 4] =sumdl4 ;
cov| 2, 4] =sunmd24

cov[ 3, 4] =sumd34 ;
cov[ 4, 4] =sunmd44 ;
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Appendix C

Simulation Results

0. 10891
0. 44245

Nobs Vari abl e N NMSS MEAN
60 Y1 30 30 2. 48477
Y2 30 30 2.52324

Y 60 0 2. 50401

0. 32004

Iteration History

BS

O©oO~NOOODSWNPE

N

60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60
60

K LF2 LF3 SPH ML
1 22.921 -4.647 0. 500 2.485
2 22.582 -4.987 0.478 2.485
3 22.498 -5.070 0. 466 2.486
4 22.468 -5.101 0. 458 2. 486
5 22.452 -5.116 0. 452 2. 486
6 22.442 -5.126 0. 448 2.486
7 22.435 -5.133 0. 445 2.486
8 22.430 -5.138 0. 442 2.486
9 22.426 -5.142 0. 440 2. 486
10 22.423 -5.145 0.438 2. 486
11 22.421 -5.147 0. 436 2. 486
12 22.419 -5.149 0.435 2.486
13 22.418 -5.150 0. 433 2.486
14 22.417 -5.151 0. 432 2.486
15 22.417 -5.152 0.431 2. 486
16 22.416 -5.152 0.431 2. 486
17 22.416 -5.153 0. 430 2.486
18 22.415 -5.153 0. 429 2.486
19 22.415 -5.153 0. 429 2.485
20 22.415 -5.153 0. 428 2.485
21 22.415 -5.153 0.428 2.485
22 22.415 -5.153 0.428 2.485

MNMNNNMNDPDOMNMNNNDDODOMNOMNNDDDODODNNDDDNODND

523
521
520
519
519
519
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518
518

COOO0O000000000000000000

. 107

111
113
113
113
112
112
112
111
111
111
110
110
110
110
110
109
109
109
109
109

. 109

COOO0O0O0O0O0O0O0O0O0O0O0O0O0O0O00O000

435
425
421
418
416
414
413
413
412
411
411
410
410
410
409
409
409
409
409
408
408
408
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Predicted Probabilities (G=Group, Y =0bservation, S=Prediction, E=Error)

aBS I NDEX G Y S E
1 11 1 2. 30652 0.70704 0. 29296
2 12 1 2.31994 0. 67642 0. 32358
3 13 1 2.34472 0. 71800 0. 28200
4 14 1 2. 34969 0. 57081 0. 42919
5 15 1 2.35195 0. 71647 0. 28353
6 16 1 2. 40306 0. 73686 0. 26314
7 17 1 2.40521 0. 20611 0. 79389
8 18 1 2.41964 0. 72067 0. 27933
9 19 1 2.42080 0. 49133 0. 50867
10 20 1 2.42389 0.71978 0. 28022
11 22 1 2. 42675 0. 71006 0. 28994
12 24 1 2. 43058 0. 66377 0. 33623
13 25 1 2. 43302 0.71270 0. 28730
14 26 1 2. 44992 0. 73650 0. 26350
15 27 1 2.47261 0. 68622 0. 31378
16 29 1 2.48225 0. 29508 0. 70492
17 30 1 2. 49065 0.72714 0. 27286
18 31 1 2.50613 0. 71285 0.28715
19 32 1 2.51939 0.73723 0. 26277
20 33 1 2.52940 0. 60109 0. 39891
21 34 1 2. 53060 0. 00090 0.99910
22 35 1 2.53481 0. 25495 0. 74505
23 36 1 2. 54859 0.48733 0. 51267
24 37 1 2. 56980 0. 38740 0. 61260
25 38 1 2.57786 0. 03204 0. 96796
26 39 1 2.57990 0. 05485 0. 94515
27 43 1 2.63380 0.64171 0. 35829
28 44 1 2.64818 0. 00001 0. 99999
29 48 1 2.70363 0. 00027 0.99973
30 49 1 2.72978 0. 23857 0. 76143
31 1 2 1. 50669 0. 49836 0. 49836
32 2 2 1. 58658 0. 58934 0. 58934
33 3 2 1.90177 0. 53568 0. 53568
34 4 2 1. 97146 0. 70586 0. 70586
35 5 2 1. 97397 0.73323 0.73323
36 6 2 2.16792 0. 73731 0. 73731
37 7 2 2.18882 0. 45399 0. 45399
38 8 2 2.24610 0. 66034 0. 66034
39 9 2 2.25091 0.70344 0.70344
40 10 2 2.28768 0. 71602 0. 71602
41 21 2 2. 42577 0. 68907 0. 68907
42 23 2 2.42691 0. 58368 0. 58368
43 28 2 2.47978 0. 72896 0. 72896



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Prediction Probabilities Mean Absolute Deviation

40
41
42
45
46
a7
50
51
52
53
54
55
56
57
58
59
60

NNNPNDNDNNNDNNNDNMNNNDNNNODDN
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. 58444
. 59018
. 60913
64941
67540
69384
74229
82004
88731
90976
93667
93674
94314
96938
. 98811
. 05585
. 29127
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. 00071
. 00000

00000
00227
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00000
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33055
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00001
00011
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COO0O00O000000000000
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. 00010
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Appendix C

Simulation Program Listing

proc int ;
* define signals for informed and uni nforned traders ;

131406 ;
30 ;

@.

N

®
I

N

.5 + (.10)*normal (repeat (seed, 1, si ze)) ;
repeat (1, 1, si ze) ;

(e}
H
o mnu

y2 = 2.5 + (.50)*nornal (repeat (seed, 1, si ze)) ;
g2 = repeat (2, 1, si ze) ;

y =11l y2)-

g =(91]l 92

create nmainl var{yl,y2,y,q} ;
append ;
cl ose mainl ;
* do stats on actual val ues ;
use mai nl ;
sumary var{yl y2 y} stat{n nniss nean std} ;
cl ose mainl ;
* shuffl e observations ;

sort mainl by y ;

n = ncol (y*) ;
d=( j(L(n-int(n/2)),1) || j(1,int(n/2),0) )"
i =j(1,n11) ;

* define normal distribution function ;

start f(y,m,s) ;

fv = (1/(s*sqrt(2*3.14159))) *exp( (- (y- mu) ##2) | (2*s##2)) ;
return(fv) ;

finish ;

)

- X 0
NI
o a

f 0;
create main2 var{n, k,|f2,1f3, sph, nul, mu2, sgl, sg2} ;
do until ((abs(lf0-1f2)<.0001) | (k > 60) ) ;

sph = (i*s)/n ;
mul = (y *s)/(i*s) ;
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mi2 = (y *(1+(-1*s)))/ (i *(1+(-1)*s)) ;

sgl = sart (((((y-nul)##2) " *s) )/ (n*sph))

sg2 = sart (((((y-mu2)##2) *(1+(-1*s))) )/ (n*(1-sph))) ;

s = sph*f(y, nul,sgl) / (sph*f(y, mul, sgl)+(1-sph)*f(y, m2,sg2)) ;
I1fo =1f2;

I f1 = (sph*f(y, mul, sgl) + (1-sph)*f(y,nu2,sg2)) ;

1f2 = -2*(i*log(l1f1)) ;

1f3 = 1f2 - (15*1 og(2*3. 14159)) ;

k =k +1;

append var{n, k,1f2,1f3, sph, mul, nu2, sgl, sg2} ;
end ;
cl ose mai n2 ;

create main3 ;
append var{s} ;
cl ose nmai n3 ;

data main4 ;
set mainl ;
index = _N_;
keep index g vy ;
data main5 ;
set main3 ;
index = N_
keep index s ;

data nmainb6 ;
merge nai n4 main5 ;
by index ;
if g=1thene
if g=2then e

proc sort )
by g ;

proc print data=nain2 ;
format 1f2 1f3 sph mul mu2 sgl sg2 6.3 ;
var n k [f2 1f3 sph nul mu2 sgl sg2 ;

proc print data=nainb6 ;
var index gy s e ;

proc means nean ;
title2 ' Means Absolute Deviation of Prediction Error' ;
var e ;
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Tablel
Normality Test on Bids and Asks

Percent Rejected at 10% Level
Session Nobs Action Informed  Uninformed Combined

9 30 Bid 0.50 0.53 0.63
Ask 0.40 0.53 0.67

10 25 Bid 0.68 0.60 0.76
Ask 0.64 0.40 0.76

11 30 Bid 0.43 0.47 0.63
Ask 0.30 0.30 0.57

12 30 Bid 0.63 0.53 0.77
Ask 0.70 0.40 0.77

14 30 Bid 0.43 0.50 0.73
Ask 0.37 0.37 0.67

15 40 Bid 0.78 0.85 0.95
Ask 0.93 0.73 0.98

16 40 Bid 0.73 0.68 0.98
Ask 0.60 0.78 0.88

17 35 Bid 0.63 0.51 0.57
Ask 0.54 0.57 0.69

All 260 Bid 0.61 0.60 0.77
Ask 0.57 0.53 0.76

Notes: A Shapiro-Wilk Normality test is performed for each period on the bids and asks.
The percent of the times the test rejects Normality at the 10% level is reported for each
session.
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Table2
Statistics on Bids and Asks

|. Paired T-test for Same Means
Action Number of Periods Statistic Probability
Bid 260 7.10 <0.01
LogBid 260 5.04 <0.01
Bought 260 -0.11 0.91
Ask 260 -9.19 <0.01
LogAsk 260 -8.03 <0.01
Sold 260 0.00 0.99

[l. F-test for Same Variances
Action Number of Periods Percent Rejected at 10% Leve
Bid 260 0.37
Ask 260 0.37

Notes. InPart |, apaired Student’s T-test for same means is performed by taking the
informed less the uninformed action for each period within each session. In Part I, an F-
test for same variances is performed for each period within each session. The overall
percentage of the timesthe test rgects the null of same variances at the 10% level is
reported.



179

Table3a
Results of the Mixing Model for Session 16

Informed Group

Vari abl e N Mean Std Dev M ni mum Maxi mum
GROUP 20 1. 0000000 0 1. 0000000 1. 0000000
PRI CE 20 1. 7555000 0.4763510 0. 7900000 2. 7700000

Uninformed Group

Vari abl e N Mean Std Dev M ni mum Maxi mum
GROUP 20 2. 0000000 0 2. 0000000 2. 0000000
PRI CE 20 2. 0010000 0. 2373960 1. 4000000 2.1800000

Maximum Likelihood Results

K LF2 LF3 SPH MJ1 MJ2 SG1L S&2
15 12. 699 -14. 869 0. 520 1. 668 2.106 0. 437 0. 070

Notes: Descriptive statistics are provided for the informed and uninformed groups. The
maximum likelihood results after 15 iterations show alikelihood value of 12.70 or -14.87
without the constant term. The percentage of observations from the informed group is
52%. The mean and variances from each distribution are also shown.



Details for Period 1 of the Mixing Model for Session 16

GBS EXP
1 16
2 16
3 16
4 16
5 16
6 16
7 16
8 16
9 16

10 16

11 16

12 16

13 16

14 16

15 16

16 16

17 16

18 16

19 16

20 16

21 16

22 16

23 16

24 16

25 16

26 16

27 16

28 16

29 16

30 16

31 16

32 16

33 16

34 16

35 16

36 16

37 16

38 16

39 16

40 16

ACTI ON

Bl D
Bl D
Bl D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D
BI D

PRI CE

EPNNNNNENNNNENNNEERENNNNENNNONNENNRERRRRRREDN

.00

00
50
60
40
65
45
70
80
22
25
00
00
01
79
00
05
77
76
06
10
11
11
70
29
12
15
13
70
16
16
03
16
87
16
17
18
07
00

.75
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Table3b

GROUP

P FRPEFEPNNNENENNMNENNNMNPRPENNMNNPRPERPNRPENNERPERPEPNENNNRPREDN

NGROUP

rrpbpooorroproorocooorrrrocoorroOor,PPOCORrRPPRPPOPRPOOORELERO

OO0 O0OO0O00DO0CO0OO0OO0OPFRPO0OO0OO0OFRPPFPOOOOOPRPOOPFPOOPRPROOORFPFRPFRPPFPPLPPEPO

S

. 29129
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 99954
. 22460
. 36614
. 00000
. 29129
. 24755
. 00000
. 29129
. 14123
. 00000
. 99997
. 12684
. 09718
. 09494
. 09494
. 00000
. 00000
. 09442
. 10331
. 09559
. 00000
. 11024
. 11024
. 18276
. 11024
. 97801
. 11024
. 11963
. 13194
. 11571
. 29129
. 99998

cNeoNoNoNololoNoNoNolNolololNoloNoNoNoloNoloNoNoNolNoloNoloNoNoNoNoNol i i llelNelelNe]

ERROR

. 29129
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 00000
. 99954
. 77540
. 63386
. 00000
. 29129
. 24755
. 00000
. 70871
. 14123
. 00000
. 00003
. 12684
. 09718
. 09494
. 90506
. 00000
. 00000
. 09442
. 10331
. 09559
. 00000
. 11024
. 11024
. 81724
. 11024
. 02199
. 11024
. 11963
. 13194
. 88429
. 70871
. 00002

Notes. The predictions of the model are compared with the actual data. The probability of
the action belonging to the informed group is given by thevariable S. The error isthe
difference between the predicted probability and the actual state. The mean error is0.293.
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Table4

Mean Absolute Errors for All Sessions

Session Nobs MAD Nobs MAD (filtered)
Bid Only
9 416 439 218 404
10 349 .488 236 498
11 708 455 543 437
12 521 A77 376 459
14 591 .498 340 529
15 898 494 645 462
16 940 510 469 500
17 802 490 483 .498
AsK Only
9 546 455 352 435
10 450 493 324 462
11 579 442 378 .397
12 741 456 322 .388
14 581 .502 255 480
15 713 452 415 427
16 983 474 636 463
17 806 501 416 499

Notes: The prediction errors of mixture model are reported for each session based on
mean absolute deviations. Since there are only two possible groups, the naive prediction
error is.50. The mean absolute deviations are aso reported for amodel which filtered out
predictions where the difference in the predicted mean value were less than 20¢.
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Table5
Comparison of Actual Signals and Estimated Information

Information through Participation Benchmark

Estimated M eans from the Mixing Model

Session Price Optimd Weighted Simple Pooled MinVa Max

Bids Only
9 .343 .350 .366 .382 .344 467 .370
10 .319 291 312 .338 .319 499 .292
11 .262 312 .293 .342 .262 .293 .220
12 .298 277 .275 .363 .299 443 .265
14 .318 .306 .293 .349 .318 440 .288
15 .344 277 .257 510 .344 .286 .229
16 .266 .225 .241 .278 .266 .266 .202
17 .295 .245 274 .307 .295 .364 .295

AsksOnly
9 .225 .204 .238 .296 .225 .265 125
10 241 .243 .228 .305 241 273 181
11 137 126 124 .284 137 .380 175
12 .218 .230 222 .250 .218 .249 178
14 .215 .184 212 .270 217 .233 152
15 .319 .340 311 .586 .320 .285 133
16 .269 .256 .241 .302 .270 212 131
17 .276 .254 .251 .310 277 .236 184

Notes: Price aong with various estimators are compared to a benchmark which uses the
actual signals provided to traders. Each time atrader participatesin the market, the trader’s
signal contributes to the information in the market. The mean absolute deviation for each
comparison isreported. The optimal estimator uses the variance approximation discussed
in section 3.3, and is applied on a period-by-period basis.
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Table6
Comparison of Actual Signals and Estimated Information

Fully Aggregated Information Benchmark

Estimated M eans from the Mixing Model

Session Price Optimd Weighted Simple Pooled MinVa Max

Bids Only
9 .385 .387 413 .406 .387 492 377
10 .355 .347 .338 .361 .355 474 .295
11 272 312 .288 .339 272 .336 .205
12 .330 312 .323 401 331 .465 .234
14 .361 .381 .363 .382 .361 446 .285
15 .360 274 .291 .488 .342 .298 224
16 .253 .218 .233 273 .253 .270 .204
17 .330 .264 .296 .340 .330 371 .286

AsksOnly
9 139 112 .140 .185 139 .252 227
10 172 .156 .213 .287 172 428 .254
11 123 .139 .130 .237 123 432 .360
12 112 143 .138 .190 112 .208 .201
14 155 121 .164 .238 .156 .326 217
15 .242 .246 .203 .498 .242 519 .218
16 .219 .219 .215 .246 222 .282 .182
17 .200 181 .186 .248 .201 .243 .183

Notes: Price aong with various estimators are compared to a benchmark which uses the
actual signals provided to traders. The signal for each trader is aggregated regardless of
the trader’ s participation in the market. The mean absolute deviation for each comparison
isreported. The optimal estimator uses the variance approximation discussed in section
3.3, and is applied on a period-by-period basis.



