
Chapter Three

A MIXING MODEL WITH ZERO INTELLIGENCE TRADERS
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1 Introduction

The characterization of trader behavior may be the most difficult task for the analysis

of markets.  The trading institution can be characterized as having a definite structure, a set

of rules, and a history; while the actions of trader participants might be thought of as based

on mental abilities.  Gode & Sunder (1993) examine the zero intelligence (ZI) benchmark

which models traders’ activity as if they followed a simple non-strategic algorithm.  The

algorithm instructs traders to submit random bids and asks as long as these orders would

result in a profitable trade if a transaction were to take place.  Easley & Ledyard (1993)

show that trading model populated with a variation of these ZI traders achieves surprising

efficiency allowing the traders to extract a high percentage of the potential trade surplus in a

double auction market.  More complex theoretical models include those of Wilson (1987)

and Friedman (1991).  These models require greater computational skills on the part of

traders.  The volume edited by Friedman and Rust (1993) includes an overview of

theoretical and experimental work on this subject.

The results of simulations by Gode and Sunder demonstrate that ZI traders can serve

as a useful benchmark for trader behavior in double auction markets under various

institutional rules governing trade execution.  While this perspective on trader behavior has

been useful to the researcher, strategic  traders themselves may gain a better perspective by

assuming other traders act as ZI traders.  The market institution considered is a double

auction market with common values where traders are asymmetrically informed.  We

assume only one trader approaches the market strategically to avoid strategic recursions.  It

is then shown that a single strategic trader could use the assumption of ZI to identify the

behavior of informed and uninformed traders in this market.  Once the trader types are

identified, the strategic trader could properly weight the actions of the informed trader and

uninformed trader.  By categorizing actions according to trader type, a strategic trader can

make better use of the available information in the market.

In a market considered, the informed group of traders receives a more precise price
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signal than  an uninformed group.  Each set of signals is drawn from a Normal distribution

around the true worth of the asset.  The individual signals are private information while the

structure of the signal generation mechanism is common information.  If each trader bases

a market order on private information, it can be shown that the resulting prices alone will

not reveal the private information of traders due to the non-linearity of the signal and price

relation.  This is due to the fact that signals are drawn from two unique distributions, and

prices do not identify the distribution of the associated signals.

The key to the problem is the observation that a mix of Normal distributions results

in a distribution which is not Normally distributed.  This observation leads to interesting

results.  If the observed market price were based entirely on price signals which were

drawn from two Normal distributions rather than a single Normal distribution, the result

would be that price would not be Normally distributed.  It follows that conventional

forecasting techniques predicting the conditional expected mean value of price given past

prices cannot be used because the model does not have an error structure which is Normal.

Estimates from misspecifying the model as having a Normal error structure will be biased

(see also Chapter 1).  Classifying prices according to trader type under the ZI assumption

is equivalent to identifying the distribution from which the price signal is drawn.  Knowing

the components of the mix of Normals allows a trader to avoid the non-linear estimation

problem, and allows unbiased predictions of the true asset worth.

In what follows, the empirical work on the distribution of prices and price changes is

reviewed.  Models which assume a mixed Normal structure are then discussed.  A

technique for estimating a mixed model through a variation of maximum likelihood

estimation, the estimation maximum likelihood technique, is then introduced.  This is

followed by the estimation of a mixture model under the zero intelligence assumption.  The

data used is from the experimental sessions discussed in Chapter 2.  The last section

concludes.
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2 Empirical Studies of the Distribution of Prices

The characterization of the distribution of security returns has been of interest to

researchers back to at least to the time of Bachelier (1900).  Empirical studies of historical

security returns data show convincingly that returns are not Normally distributed.  Clark

(1973) is an important reference.  An example of extensive empirical work is Friedman and

Vandersteel (1980) where daily spot foreign exchange prices from 1973 to 1979 are

characterized.  It was found that while returns tend to be symmetric, the kurtosis

coefficient of these returns was much larger than what would be expected for a Normal

distribution.  Taylor (1985) describes data for 15 US stocks, a foreign stock index, 6

metals, the dollar/sterling spot rate, and futures on commodities and exchange rates.  For

the period examined, often exceeding ten years of daily observations, it is found again that

the coefficient of kurtosis for these returns exceed the value of 3, the level at which these

returns could be considered Normally distributed.1

A second feature of security returns is that volume and price changes are positively

related.  (see, e.g., survey by Karpoff (1987))  Volume has been considered to be the

driving process in price variability.  Clark (1973) describes variance of prices and volume

as having a curvilinear (nonlinear) relation, and demonstrates how this might be modeled

as a subordinated stochastic process.  The base process is the random arrival of new

information.  The secondary process is the observed price sequence.  Using the price

series alone, price changes are found not to be Normally distributed.  However, using

volume to better estimate the arrival of new information, kurtosis is reduced to levels

comparable to those expected under Normal distributions.  Volume is also used to explain

price variations by Blume, Easley & O’Hara (1994) where the absolute value of prices

changes and volume are positively related.  Conrad, Hameed, and Niden (1994) find that

abnormal volume is related to return autocovariances in an empirical study of equities.

Wang (1994) also finds a relation between price changes and volume in his recent
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theoretical model.

A third feature of security prices is the observed variance heterogeneity of returns

over time.  The variance of observed price changes has been modeled as having been

generated by a mixture of Normals.  Observed trading volume has been used to identify

this mixture by Tauchen and Pitts (1983), where a bivariate Normal mixture model is used

to describe the relation of volume with the variance of price changes.  This allows the

determination of a conditional distribution of price changes given volume.  Their model is

then used to study the relation of volume and open interest to the volatility of prices in 3-

month T-bill futures contracts.

3 The Estimation Maximum Likelihood Algorithm

3.1 Background

The estimation maximum likelihood (EM) algorithm as a method of solution to finite

mixture densities is related to Fisher’s method of scoring  (see, e.g., Fisher (1935)).  The

application of the EM algorithm to estimate the components of a multivariate Normal

mixture was proposed by Day (1969), although maximum likelihood estimation of mixture

density problems had been discussed in other work in the 1960s according to Redner and

Walker (1984).  This method was proposed as an improvement to the more difficult

estimation by the methods of moments first introduced by Pearson (1894).  An extensive

evaluation of the method is found in Dempster, Laird, and Rubin (1977).  Green (1984)

discusses how this method compares to the method of iteratively reweighted least squares.

Titterington, Smith, and Makov (1985) discuss finite mixture models in general along

various techniques and procedures including EM.

Finite mixture models are relatively common in the economic literature.  The

switching regression model discussed by Goldfeld & Quandt (1972) might be considered a

type of finite mixture model; although in this case, the resulting maximum likelihood
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problem was solved by non-linear estimation methods other than EM.  As was seen in the

previous section, mixture models have also been used to explain the distribution of price

changes by assuming the price sequence contains a subordinated process.  Recent

examples of the method include estimation of the joint distribution of prices and volatility

(Danielsson (1994)), and partially adaptive regression models (Phillips (1994)).

Finite mixture models are also related to latent variable problems in that the variable

identifying the mixture is often unobserved.  Aitkin and Wilson (1980) review this

approach to identify outliers in a mixed sample of “good and bad” observations in a

sample.  Their work serves as a simple introduction to the method and will demonstrate

how the EM method will be used to identify a mix of “good and not so good” market

prices.

Given a sample of independent observations,  y1 to  yn, it is assumed that a subset

of these observations do not reflect the true population.  The probability model consists of

the true distribution and an alternate distribution along with a mixing proportion.  The

combined density function (from Aitkin and Wilson) is

  f (y) = (p)( f1(y)) + (1 – p)( f2(y))

where  f1()  and f2()  can be any density function.  Normal density functions with equal

variances and unique means are used for this example.

   fi = 1
2πσ

exp ( – (y – µ i)2 / 2 σ2)

The parameters of the model are estimated by maximum likelihood and yield solutions,

   p = P 1 | yiΣ
i

/ n
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   µ j = yi P j | yiΣι / P j | yiΣι
j = 1, 2

   σ2 = Σ
j

yi – µ j
2 P j | yiΣ

i
/ n j = 1, 2

where P() is the probability estimate for an observation to belong to one or the other

subgroups.  This estimate derives from the likelihood ratio of the subgroups and is defined

as

  P 1 | yi = p f1 yi / p f1 yi + 1 – p f2 yi

The estimation of the model proceeds in similar way to reiteratively reweighted least

squares.  Initial estimates of P() are chosen, then the loglikelihood equation is maximized

for each parameter.2 These parameter estimates are used to adjust P() and the loglikelihood

equation is again maximized.  The algorithm continues, alternating between the estimation

of the probability for each observation and the maximization of the loglikelihood equation,

until convergence is reached.  The criteria for convergence may be either that the value of

the likelihood equation ceases to improve for some tolerance or that the parameter estimates

stabilize for some predetermined tolerance.

Darwin’s observations of heights of pairs of plants (Zea Mays) which were either

self-pollinated or cross-pollinated has been used as sample data for techniques to detect

outliers by Box and Tiao (1968) and Abraham and Box (1978).  Aitkin and Wilson (1980)

demonstrate how the EM algorithm can be used classify observations into two

distributions: a true distribution and an outlier distribution.  The original Darwin data

discussed in Fisher (1935) is reproduced in Appendix A.  A SAS/IML implementation of

the EM algorithm is shown in Appendix B along with the results for the Darwin data.  The
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supposed outliers in the data are -67 and -48 which represent in eights of inches the

difference between crossed and self-pollinated plant heights.  All of the remaining

differences in plant height are positive.

The results after 6 iterations are also reported in Appendix B.  These results match

the results found in Aitkin and Wilson.  The final loglikelihood value is 143 and the mean

of the outlier distribution is -57 whereas the mean of the supposed true distribution is 33.

The probability that each of the negative observations may be classified as belonging to the

outlier distribution is greater than .99 while the probability that any other observation may

be classified as an outlier is less than .01.

3.2 Asset market simulation

Before applying the EM technique to experimental data, the technique is applied to

simulated data to demonstrate how the algorithm performs under ideal conditions.  The

experimental Irmkt sessions used two Normal distributions with same means and unique

variances (see Chapter 2).  For this simulation, two distributions will be used where the

mean of each distribution is $2.50, while the standard deviation is 10¢ for one distribution,

and 50¢ for the second.  These values are comparable to the moments used as signals in

the experimental sessions.  The two distributions are then mixed and the EM algorithm is

applied to estimate the moments of each distribution.  The identification of each

observation predicted by the estimation is then compared with the true identity of each

observation.  This simulation might be described as allowing one trader to observe the

signals for all of the traders, then estimating the mean value of the signals and the

corresponding precisions.

The results of the simulation are shown in Appendix C.  Each sub sample of the mix

was comprised of 30 draws.3 The estimated proportion of each signal is .42 vs. the actual

value of .50.  The mean of each group of signals is 2.485 and 2.518 vs. the actual values

of 2.485 and 2.532.  The estimated precision for each group is .109 and .408 vs. the
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actual values of .109 and .442.  The estimated classifications of the observations is also

shown.  The observations were sorted after the estimation: the first 30 observations belong

to the first group, and the remaining 30 belong to the second group.  Many of the

predictions for the first group have probabilities of greater than .75 indicating that there is a

high probability that these observations belong to the first group.  The mean absolute

deviation of the predicted probabilities vs. actual group classification is .429, indicating

moderate predictive ability.

3.3 Information Criteria

Prediction of individual market orders is one measure of the usefulness of this

model.  Another criterion is how well the model explains the distribution of observed

market orders.  An increase in the information about the classification of market orders

presumably allows a trader to better understand the underlying price process.  Information

in maximum likelihood estimation problems is usually measured by the Fisher information

matrix (see, e.g., Green (1993)).  Using the notation of Titterington, Smith, and Makov

(1985), the Fisher information matrix for  n observations is

    n I ψ = E Dψ L ψ Dψ L ψ T ,

where  ψ is a vector of parameters,   L ψ is the loglikelihood equation, and   Dψ is the

first derivative with respect to the parameters in the vector   ψ . Since the expected value of

this expression is difficult to calculate, an alternative estimator of the information matrix is

often used.  This is

    n I ψ = – E Dψ
2 L ψ ,
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where   ψ , the estimates of the loglikelihood equation at its maximum, replace the expected

actual values.  It is a well known property of the maximum likelihood technique that the

inverse of the information matrix provides the asymptotic covariance matrix for the

estimates.  The details of this calculation of this matrix for the Darwin data are shown in

Appendix B4 .

The information matrix may be interpreted as how much of the available information

from the observations are captured in the model specification.  This matrix may also be

compared to a more general specification of the model.  Specification testing in maximum

likelihood problems is commonly performed with a loglikelihood ratio test where the

maximized loglikelihood values from both specifications are compared.  Aitkin & Wilson

(1980) remark, however, that for finite mixture problems, the loglikelihood ratio test is not

valid due to the non-regularity of the model.  In common with many latent variable models,

the mixing proportion is not identifiable in the general (non-mixed) specification.

While the ratio test is not available, the information matrix is still useful.

Titterington, Smith, & Makov (1985) compare the information matrix associated with a

fully categorized set of observations with information matrix associated with a mixture of

observations.  When assuming the fully categorized observations are more informative

than the uncategorized observations, the gain in amount of information can be measured.

This type of analysis might be thought of as a comparison of the entropy of two systems.

In the case considered, a single Normal distribution would exhibit a higher quantity of

entropy than an ordered (categorized) system.  The relation Tittington, Smith, & Makov

use is

Ic =  Iu + Ie

where  Ic is the information matrix from a fully categorized model,  Iu is the information

matrix from an uncategorized model, and  Ie is the information matrix representing the
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extra information associated from knowing the correct categorization of the observations.

Since both  Ic and  Iu are positive semidefinite matrices when the loglikelihood function is

evaluated at its maximum value, the difference of these matrices,  Ie will also be a positive

semidefinite matrix.  Additional details are found in Titterington, Smith, & Makov (1985).

Viewing the estimation problem in terms of increasing the amount of information

gathered from a set of observations gives insight into the equilibrium price equation

derived in the rational expectations model of Chapter One.  The equilibrium price equation

was derived by assuming individual traders maximized a negative exponential utility

function subject to a budget constraint to arrive at the individual demand for each trader.

These individual demands were then summed over all traders and a market clearing

condition was imposed so that demand equaled supply.  The result was

   
pt =

ρoψo + µρ t
s1 y t

1 + (1 – µ)ρ t
s2 y t

2

ρo + µρ t
s1 + (1 – µ)ρ t

s2 ,

where   pt is the equilibrium price in period  t, the mean and precision of the information

common to both types of traders is    ψo and   ρo , the proportion of informed traders is

 µ , the mean and precision of the signals of the informed and uninformed traders are

  y t
1 ,    ρ t

s1 and    y t
2 ,    ρ t

s2 .

The equivalence of the solution of the rational expectations problem and the proposed

mixing models described here is a key insight.  This equation determining the equilibrium

price in the rational expectations model can be shown to also be the best linear unbiased

(BLU) estimator of the mean value of a three component mixing model.  The properties of

this estimator are discussed in  Bement & Williams (1969  p. 1375).  The important quality

of the BLU estimator is that it maximizes the available information from a set of

observations.  It can also be shown that the information derived from the observations

using this estimator will be greater than the information associated with estimators from a
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simpler (non-categorized) model.  This increase in information follows the relation

describing the extra information  (Ie )  describing the difference between a categorized

model vs. an uncategorized model.

Extending the work of Williams (1967), Bement & Williams (1969) also derive an

approximation for the variance of the weighted mean of a two component mixing model.

They compare the finite series expansions of the estimator when sample data is used with

the finite series expansion of the estimator when the variance of each component

distribution is known.  In a sense, this method of approximating the variance of the

estimator measures the information lost when the information describing the categorization

of observations (the variance of each category) is not available.

Bement & Williams use the variance approximation to compare the weighted average

estimator to other possible estimators to describe the mean of the mix of observations.

They develop criteria for selecting the optimal estimator based on the variance of the

weighted average estimator.  The alternate estimators suggested by Bement & Williams are

the average sample mean, the pooled sample mean, and the mean with the smaller variance.

These are

  i. y 1 + y 2 / 2

  ii. n1 y 1 + n2 y 2 / n1 + n2

   iii. y 1 σ1 / n1 ≤ σ2 / n2

where    σ1 and    σ2 are the variances of the two sub samples.  It is proven that the

weighted average variance approximation will be a superior estimator compared with these

alternatives when the following inequalities are satisfied

   i. 4 Q < 1 / n1 + 1 / n2
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   ii. Q < n1 + n2 / ρ / n1 + n2
2

  iii. Q < 1 / n1

where    ρ = σ1 / σ2 , and  Q is defined by

   1
n2ρ + n1

× 1+
n1 n2 ρ

n2ρ + n1
2 ×

   
2 1

n1 – 1 + 1
n2 – 1

– 16
n2ρ + n1

n2ρ
n1 – 1 2 + n1

n2 – 1 2 +

12
n2ρ + n1

2
3n2

2ρ2

n1 – 1 2 +
n2

2ρ2 – 4n1n2ρ + n1
2

n1 – 1 n2 – 1
+

3n1
2

n2 – 1 2

+
12 n2

2ρ2

n1 – 1 3 +
12 n1

2

n2 – 1 3

.

The approximation to the variance of weighted mean estimator is then defined by

adjusting the variance of the first sub sample by the factor defined above.  This is

   σw = Q × σ1 ,

where  
  σw is the variance of the mean of the mix.

The variance approximation is useful in terms of a trading model because it allows
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the optimal estimator of the mean of a mix of signals to be identified, and using this

optimal estimator gives the best estimate of the equilibrium price defined in Chapter One.

The mixing model therefore provides two kinds of information: the first is classification of

individual observations according to trader type, and the second is an estimate of the

equilibrium price function.  The simulations showed that the EM algorithm performs

reasonably well in predicting the moments of the distributions, and in identifying

individual observations.  In the next section, these techniques are applied to actual

experimental market data from Chapter Two.

4 Application to Experimental Data

4.1 Description of the model

The following model employs the estimation maximum likelihood (EM) algorithm to

estimate a mix of two types of signals simply by observing market orders.  Each trader

receives only a single private signal at the beginning of a trading period, and each

additional price observation (bid or ask) within the period is considered an additional signal

of unknown precision.  The precision of these additional signals is in fact a mix of two

precisions: the precisions of informed and uninformed trader.  The model identifies the

moments of each of the distributions in this mix, and identifies the distribution from which

each price observation is drawn.  As a result, the model demonstrates how larger volumes

of market orders improves the estimation of the precision of signals of the informed

traders, and thereby improves the estimation of equilibrium prices.  Volume is related to

the estimation the true asset worth in that it measures the number of price observations and

determines the sample size for the estimation.

It is assumed that trader behavior can be modeled as ZI in that traders add a random

profit to their signal to determine a bid value, and subtract a random profit to their signal to

determine an ask value.  Also, it is assumed that the profit margins can be considered to be
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Normally distributed with a positive mean value, and this mean value is the same across

traders.  Finally, it is assumed that the sequence of market orders is random, and gives no

indication of the type of trader submitting the order.

The observed price sequence of bids and asks in levels given these assumptions is

therefore modeled as a mix of two distributions and a stable bid-ask spread.  The profit

margin for either side of the market will shift the distribution of signals outward away from

the mean value from which the signals are drawn, although the mean value of the both

distributions will be the same.  The resulting sequence of bids levels will then be a mixed

distribution of Normals with a common mean, and the same is true of the sequence of ask

levels.  The mean value of the bid sequence and the ask sequence will not be equal,

although the difference in means will be Normally distributed.

The five parameters to be estimated are the mixing proportion for the two groups (p),

the means of each groups (µ1, µ2), and the variances for each group (σ1, σ2).  The

loglikelihood function is

   log li = [ln [(p) f1 (µ1, σ1) + (1 – p) f2 (µ2, σ2)]]Σ
i

.

Once the moments of the two distributions are identified, these distributions are

assigned to either the informed or uninformed group of traders.  In order to assign the

distributions it will be assumed that informed traders typically outbid (outask) uninformed

traders.   This is equivalent to assuming informed traders are more likely to have the inside

market (the highest bid or lowest ask).  Since traders must have the inside market to

complete a trade, and profits can only be earned through transactions, it is to the advantage

of a trader to have the inside market.  It is assumed that the information advantage of the

insiders allows them to capture the inside market.  Using this assumption, the distribution

with the greater (lesser) mean will be assigned to the bid (ask) of the informed traders.

These assumptions are tested below.
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4.2 Testable Hypothesis

The mixture of distributions (MOD) model is tested on laboratory data according to

two criteria: the identification of market orders and the estimation of equilibrium price.  The

null hypothesis is that market orders (either bids or asks) are equally likely from informed

and uninformed traders, and a strategic trader is unable to identify the type of trader using

market orders.  The alternate hypothesis is that the MOD model allows traders to identify

the type of trader submitting market orders, and provides an estimation of the equilibrium

price.

Since there are only two types of traders considered, the model is only useful if it

outperforms predictions by a random variable drawn from a binomial distribution.  Define

the state as a binary variable where Informed = 1, and uninformed = 0.  The expected

value of a single draw from a binomial distribution is simply the probability of a success

where success is defined as choosing the correct state.  The expected error is the actual

state less the expected value.  Given that the state takes only two values, the expected error

is always .5.  To test the mixture of distributions hypothesis, the predictions of the model

will be compared against this benchmark.

It should be noted that rejection of the MOD model does not necessarily imply

rejection of the ZI assumption.  Traders may still be using a ZI strategy to place bids and

offers while the resulting market orders are so similar that the MOD model cannot correctly

identify them.

4.3 Results

4.3.1  Test of Normality

The experimental data exhibits market orders which are not Normally distributed.

The Shapiro-Wilk test of Normality is applied to the observed bids and asks from sessions
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9 through 17 (Table 1).5 Each side of the market is analyzed independently.  On the bid

side, the Normality test for the combined informed/uninformed group (group 9) could be

rejected about 77% of the time indicating that the bids from the mix of traders could not be

considered to be Normal.  For the informed biders, the number of times Normality can be

rejected drops to 61% of the time, and for the uninformed to 60% of the time.  For the ask

side, the results are comparable.  Normality for the asks of the combined group of

informed/uninformed traders is rejected more often than for the groups considered

independently.

4.3.2  Characterization of Bids and Asks

In Table 2, descriptive statistics are run on several time series of prices (bid, logbid,

bought, ask, logask sold).  Several features of these time series are apparent.  Informed

traders tend to bid higher than uninformed traders and ask below uninformed traders.  This

is seen in the mean bid within each period of each session.  A paired t-test was run for all

the periods.  The null hypothesis of same means across groups can be rejected at the .01

level for the bid or the ask side.6 Session 15 is shown as a sample of the complete data.

The same is true if the log of bids or asks is taken.

The variance of the bids or asks across groups may or may not be the same across

the two groups.  A difference in the mean variance was computed for a simple comparison,

then an F-test of the variances was performed taking into account the degrees of freedom

for each group in each period.  These results are presented for a sample session (Session

15).  A summary of the significance of this test is also shown.  For all periods in all

sessions, the null hypothesis of same variances across groups can be rejected at the 10%

level in about 38% of the periods examined.

For the actual transaction prices (bought or sold), there appears to be little difference
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between the two groups in either the mean values or variances.  For this reason,

transaction prices were excluded from the data and only market orders (unaccepted bids

and asks) were used.

4.4 Estimates of the model

Exploiting the differences in the observed behavior of the informed vs. uninformed

traders, a five parameter model (p, mu1, mu2, sigma1, sigma2) is compared with a simple

two parameter model (mu, sigma).  It is then shown that by assigning the means in this

model to the informed and uninformed groups, a strategic trader could do better using this

model than by averaging of all observed prices.  The buy side and the sell side are modeled

independently.

Session 16 period 1 is used as an example.  The actual mean bid of Group 1

(informed traders) is 1.76 vs 2.00 for Group 2 (uninformed traders).  The model assumes

two Normal distributions with unique means and variances.  As shown in Table 3a,

convergence took place after 15 iterations (k=15).  The value of the likelihood function is

given with and without a constant (log(-2*Pi)), as well as the estimated parameters of the

model.  The estimated mean for group 1 of 1.67 compares with the actual mean of 1.76,

and the estimated mean for group 2 of 2.11 compares with the actual mean of 2.00.  The

variances are also comparable.

Since probabilities for each observation are given, these are compared with the actual

group classification of each observation.  The vector  s defines the predicted probabilities

for each observation.  The error for each observation is computed and the mean for all 40

observations is given.  Since each observation could be considered a binomial draw from

either distribution, the mean error would be .50 if it were equally likely that any

observation belonged to either group.  In the model, the mean absolute error is .29.  It is

unlikely that this value could be produced by randomly assigning observations to groups.

The mixing model is estimated for all periods of all sessions in Table 4.  For most of

the sessions, the mean absolute deviation is less than .50, indicating that the model does
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slightly better than a binomial draw.  This improvement allows the null hypothesis of no

improvement to be rejected, and the alternate MOD hypothesis to be accepted.   Results

after the data were filtered are also reported.  Since the mixing model must discriminate

between two groups of data, the model will perform best when these data are distinctly

different while the model will have difficulty when these data are very similar.  A filter is

used to eliminate the periods where the predicted difference between the data is less than

20¢.  As seen in Table 4 there is an improvement in the predictions of the mixing model

when this filter is used. 

4.5 Estimation of Equilibrium Price

The estimates of the mixing model can now be compared to the expected equilibrium

price.  The experimental sessions provided one signal per trader at the beginning of each

period, and traders were split equally between the informed and uninformed groups.  One

method of computing the expected equilibrium price is to fully aggregate information by

taking into account each trader’s signal.  This method was used in Chapter Two.  The

actual market orders, however, were voluntary so some traders were over represented.  A

second method considers only the signals of the active traders.  To calculate the average

signal for the informed trader, each market order by an informed trader contributes one

observation.  The same rule is used to calculate the average signal for the uninformed

traders.  And lastly, while the traders were initially assigned equally between the two trader

types, the actual participation rate is used for the proportion of informed and uninformed

traders.  The expected equilibrium price is then calculated according the the equilibrium

price function using the information from one of the above aggregation methods.  The

resulting expected equilibrium price can then be used as a benchmark to test the mixing

model.

The estimates of the mixing model provide an estimate of the mean for both types of

traders along with the mixing proportion.  The variance approximation is also calculated

and the weighted average mean of the mixing model can be compared to alternative
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estimators of the mean of the mix of observations using the criteria discussed in section

3.3.  An additional estimator was also considered.  Since it was found that informed

traders tend to bid higher (ask lower) than the uninformed traders, the largest (smallest) of

the two means was considered as an estimator.

The results of the comparison are shown in Table 5 & 6 for each experimental

session.  The actual trader signals weighted by the actual signal sample variances are used

as the baseline for the comparison in Table 5, and the aggregated information is used for

the comparison in Table 6.  The mean absolute deviation (MAD) of the observed market

price and of each estimator with respect to this benchmark is shown.  The MAD for the

optimal estimator using the  Q  criteria discussed in section 3.3 is also shown.  For many

of the sessions, the optimal estimator shows a smaller MAD than the observed market

price.  The weighted average mean is often the best estimator, and the  Q criteria indicates

many cases when alternate estimators are optimal.  The largest (smallest) of the means for

bids (asks) used as an estimator improves upon all other estimators in many of the

sessions.  These results support the mixing of distributions hypothesis in that the estimated

of the model provide more information than simply observing price.

5 Discussion

The model of a mixture of Normal distributions presented here allows a role for

volume in each trader’s estimation of the current fundamental.  Volume increases the

number of sample observations in a maximum likelihood estimation, and may improve a

trader’s estimation of equilibrium price.  Unlike the model of Blume, Easley, & O’Hara

(1994) volume here might directly enter into the demand function of a strategic trader.

This model is fairly simple, and knowledge of the structure of the market could be

used to enhance the model.  Transaction prices were not used although it is known that

these valuable provide information.  The bid side and the ask side are modeled

independently even though the same signal allows each trader to be active on both sides of
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the market.  A more general model which includes both sides of the market in one

estimation might improve the estimation.  Another enhancement might consider the

convergence over time of market prices to the true value.  In our model, price observations

early and late in the period are treated equally.  Also it is known that the variance of price

changes declines over time, taking this into account would allow a better estimation of the

variance of the original signals.

As was seen in the introduction, this type of model has wide applicability.  The

resolution of the sources of price variability would be of great importance in all types of

financial markets.  Hopefully it has been demonstrated how key structural features of a

market such as the observed behavior characteristics of two types of traders can be

incorporated directly into a mixture of distributions model.
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Appendix A

Darwin Data for Heights of Zea Mays

Pot Number Crossed Self-Fert. Difference

I. 23.5 17.375 6.125

12 20.375 -8.375

21 20 9

II. 22 20 8

19.125 18.375 0.75

21.5 18.625 2.875

III. 22.125 18.625 3.5

20.375 15.25 5.125

18.25 16.5 1.75

21.625 18 3.625

23.25 16.25 7

IV. 21 28 3

22.125 12.75 9.375

23 15.5 7.5

12 18 -6

Notes:  Data is reproduced from Fisher (1935).  Differences in plant heights are converted
to eights of an inch for the analysis to correspond with Aitkin & Wilson (1980).
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Appendix B

EM Algorithm in SAS/IML Applied to Darwin Data

Iteration History

K       LF2       LF3       SPH       MU1       MU2       SGS
1 147.3486   119.78044  0.0666667       -67 27.214286 777.35714

2 144.54424  116.9761  0.1098303 -58.70257  30.75891 547.19352

3 143.57921  116.01105 0.1319683 -57.26193 32.821484 400.06512

4 143.5671   115.99896 0.1335204 -57.34806 32.996127 385.36988

5 143.5671   115.99895 0.1335125 -57.37018 32.998713 384.90068

6 143.5671   115.99895 0.1335109 -57.37141 32.998733  384.8842

Prediction Probability Vector

S
0.9999833 0.9985557 0.0021495  0.001345 0.0003291 0.0002058 0.0000398

: 0.0000315 0.0000123 9.7255E-6 5.8111E-7 8.8815E-8 1.7167E-8 6.7112E-9
: 1.983E-10

Standard Errors of the Estimated Parameters

SPH_SE    MU1_SE    MU2_SE    SGS_SE
0.0879648 14.029329 5.4484765 3.6317029

Covariance and Inverse Covariance Matrices

COV
-129.2449 0.0063644 0.0049521 0.0065059
0.0063644 -0.005082  0.000052 0.0003169
0.0049521  0.000052 -0.033687  -0.00014
0.0065059 0.0003169  -0.00014  -0.07584

INVCOV
0.0077378 0.0097452 0.0011496 0.0007024
0.0097452 196.82208 0.3020679 0.8227611
0.0011496 0.3020679 29.685896 -0.053506
0.0007024 0.8227611 -0.053506 13.189266
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Appendix B

Program Listing for Darwin Data

data main1 ;
title 'fn:kov.sas - Detection of Outliers in Darwin Data - CGP 1995' ; 
input d @@ ;
cards ; 
-67 -48 6 8 14 16 23 24 28 29 41 49 56 60 75 
;

proc iml ;
use main1 ;
read all into y ;

pi = 3.14159265 ;
n  = ncol(y`) ;
d  = ({1} || j(1,n-1,0))` ;
i  = j(1,n,1) ;

start f(y,mu,s) ;
fv = (1/(s*sqrt(2*3.14159265)))*exp((-(y-mu)##2)/(2*s##2)) ;
return(fv) ;
finish ;

s = d ;
k = 0 ;
lf2 = 0 ;

do until((abs(lf0-lf2)<.00001) | (k>10)) ;

sph = (i*s)/n ;
mu1 = (y`*s)/(i*s) ;
mu2 = (y`*(1+(-1*s)))/(i*(1+(-1)*s)) ;
sg  = sqrt(((((y-mu1)##2)`*s)+(((y-mu2)##2)`*(1+(-1)*s)))/n) ;

s   = sph*f(y,mu1,sg) / (sph*f(y,mu1,sg)+(1-sph)*f(y,mu2,sg)) ;

lf0 = lf2 ;
lf1 = (sph*f(y,mu1,sg) + (1-sph)*f(y,mu2,sg)) ;
lf2 = -2*(i*log(lf1)) ;
lf3 = lf2 - (15*log(2*pi)) ;

k = k + 1 ;

sgs = sg**2 ;
print k lf2 lf3 sph mu1 mu2 sgs ;

end ;

s = s` ;
print s ;

* add analytical derivatives ;
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start fd11(y,sphes,mu1es,mu2es,sges,pi) ;
d11 = -((1/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) - 

1/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2/
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2) ;
return(d11) ;
finish ;

start fd44(y,sphes,mu1es,mu2es,sges,pi) ;
d44 = -  ((((y - mu2es)##2*(1 - sphes))/

(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
(1 - sphes)/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2) + 
((y - mu1es)##2*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2))##2/

((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2) + 

(((y - mu2es)##4*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##7) - 
(5*(y - mu2es)##2*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##5) + 
((2/pi)##(1/2)*(1 - sphes))/(exp((y - mu2es)##2/(2*sges##2))*sges##3) + 
((y - mu1es)##4*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##7) - 
(5*(y - mu1es)##2*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##5) + 
((2/pi)##(1/2)*sphes)/(exp((y - mu1es)##2/(2*sges##2))*sges##3))/

((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges)) ;

return(d44) ;
finish ;

start fd22(y,sphes,mu1es,mu2es,sges,pi) ;
d22 = -((y - mu1es)##2*sphes##2)/

(2*exp((y - mu1es)##2/sges##2)*pi*sges##6*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2) + 
((y - mu1es)##2*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##5*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) - 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) ;

return(d22) ;
finish ;

start fd33(y,sphes,mu1es,mu2es,sges,pi) ;
d33 = -((y - mu2es)##2*(1 - sphes)##2)/

(2*exp((y - mu2es)##2/sges##2)*pi*sges##6*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2) + 
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((y - mu2es)##2*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##5*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) - 

(1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) ;

return(d33) ;
finish ;

start fd12(y,sphes,mu1es,mu2es,sges,pi) ;
d12 = -(((y - mu1es)*(1/

(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) - 
1/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))*sphes)/

(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2)) + 
(y - mu1es)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) ;

return(d12) ;
finish ;

start fd13(y,sphes,mu1es,mu2es,sges,pi) ;
d13 = -(((y - mu2es)*(1/

(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) - 
1/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))*(1 - sphes))/

(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2)) - 
(y - mu2es)/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) ;

return(d13) ;
finish ;

start fd14(y,sphes,mu1es,mu2es,sges,pi) ;
d14 = -(((1/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) - 

1/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))*
(((y - mu2es)##2*(1 - sphes))/

(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
(1 - sphes)/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2) + 
((y - mu1es)##2*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2)))/

((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2) + 

((y - mu1es)##2/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
(y - mu2es)##2/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
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1/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2) + 
1/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2))/

((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges)) ;

return(d14) ;
finish ;

start fd24(y,sphes,mu1es,mu2es,sges,pi) ;
d24 = -(((y - mu1es)*sphes*

(((y - mu2es)##2*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
(1 - sphes)/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2) + 
((y - mu1es)##2*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2)))/

(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2)) + 
((y - mu1es)##3*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##6*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) - 

(3*(y - mu1es)*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) ;

return(d24) ;
finish ;

start fd34(y,sphes,mu1es,mu2es,sges,pi) ;
d34 = -(((y - mu2es)*(1 - sphes)*

(((y - mu2es)##2*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
(1 - sphes)/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2) + 
((y - mu1es)##2*sphes)/
(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4) - 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##2)))/

(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##3*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 

sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2)) + 
((y - mu2es)##3*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##6*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) - 

(3*(y - mu2es)*(1 - sphes))/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges##4*
((1 - sphes)/(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))) ;

return(d34) ;
finish ;

start fd23(y,sphes,mu1es,mu2es,sges,pi) ;
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d23 = -(exp(-(y - mu1es)##2/(2*sges##2) - (y - mu2es)##2/(2*sges##2))*
(y - mu1es)*(y - mu2es)*(1 - sphes)*sphes)/

(2*pi*sges##6*((1 - sphes)/
(exp((y - mu2es)##2/(2*sges##2))*(2*pi)##(1/2)*sges) + 
sphes/(exp((y - mu1es)##2/(2*sges##2))*(2*pi)##(1/2)*sges))##2) ;

return(d23) ;
finish ;

sumd11 = 0 ; sumd12 = 0 ; sumd13 = 0 ; sumd14 = 0 ;
sumd21 = 0 ; sumd22 = 0 ; sumd23 = 0 ; sumd24 = 0 ;
sumd31 = 0 ; sumd32 = 0 ; sumd33 = 0 ; sumd34 = 0 ;
sumd41 = 0 ; sumd42 = 0 ; sumd43 = 0 ; sumd44 = 0 ;

do m = 1 to n ;

value = y[m] ;

sumd11 = sumd11 + fd11(y[m],sph,mu1,mu2,sg,pi) ;
sumd12 = sumd12 + fd12(y[m],sph,mu1,mu2,sg,pi) ;
sumd13 = sumd13 + fd13(y[m],sph,mu1,mu2,sg,pi) ;
sumd14 = sumd14 + fd14(y[m],sph,mu1,mu2,sg,pi) ;

sumd22 = sumd22 + fd22(y[m],sph,mu1,mu2,sg,pi) ;
sumd23 = sumd23 + fd23(y[m],sph,mu1,mu2,sg,pi) ;
sumd24 = sumd24 + fd24(y[m],sph,mu1,mu2,sg,pi) ;

sumd33 = sumd33 + fd33(y[m],sph,mu1,mu2,sg,pi) ;
sumd34 = sumd34 + fd34(y[m],sph,mu1,mu2,sg,pi) ;

sumd44 = sumd44 + fd44(y[m],sph,mu1,mu2,sg,pi) ;
end ;

* initiate matrix then assign values.  note symmetry ;

cov = I(4) ;

cov[1,1]=sumd11 ; cov[1,2]=sumd12 ; cov[1,3]=sumd13 ; cov[1,4]=sumd14 ;
cov[2,1]=sumd12 ; cov[2,2]=sumd22 ; cov[2,3]=sumd23 ; cov[2,4]=sumd24 ;
cov[3,1]=sumd13 ; cov[3,2]=sumd23 ; cov[3,3]=sumd33 ; cov[3,4]=sumd34 ;
cov[4,1]=sumd14 ; cov[4,2]=sumd24 ; cov[4,3]=sumd34 ; cov[4,4]=sumd44 ;

invcov = inv(-cov) ;

sph_se = sqrt(invcov[1,1]) ;
mu1_se = sqrt(invcov[2,2]) ;
mu2_se = sqrt(invcov[3,3]) ;
sgs_se = sqrt(invcov[4,4]) ;

print sph_se mu1_se mu2_se sgs_se ;
print cov ;
print invcov ;
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Appendix C

Simulation Results

Input Data

Nobs  Variable   N  NMISS        MEAN         STD
-------------------------------------------------
60  Y1        30     30     2.48477     0.10891

Y2        30     30     2.52324     0.44245
Y         60      0     2.50401     0.32004

-------------------------------------------------

Iteration History

OBS    N    K      LF2      LF3      SPH      MU1      MU2      SG1      SG2

1   60    1   22.921   -4.647    0.500    2.485    2.523    0.107    0.435
2   60    2   22.582   -4.987    0.478    2.485    2.521    0.111    0.425
3   60    3   22.498   -5.070    0.466    2.486    2.520    0.113    0.421
4   60    4   22.468   -5.101    0.458    2.486    2.519    0.113    0.418
5   60    5   22.452   -5.116    0.452    2.486    2.519    0.113    0.416
6   60    6   22.442   -5.126    0.448    2.486    2.519    0.112    0.414
7   60    7   22.435   -5.133    0.445    2.486    2.518    0.112    0.413
8   60    8   22.430   -5.138    0.442    2.486    2.518    0.112    0.413
9   60    9   22.426   -5.142    0.440    2.486    2.518    0.111    0.412
10   60   10   22.423   -5.145    0.438    2.486    2.518    0.111    0.411
11   60   11   22.421   -5.147    0.436    2.486    2.518    0.111    0.411
12   60   12   22.419   -5.149    0.435    2.486    2.518    0.110    0.410
13   60   13   22.418   -5.150    0.433    2.486    2.518    0.110    0.410
14   60   14   22.417   -5.151    0.432    2.486    2.518    0.110    0.410
15   60   15   22.417   -5.152    0.431    2.486    2.518    0.110    0.409
16   60   16   22.416   -5.152    0.431    2.486    2.518    0.110    0.409
17   60   17   22.416   -5.153    0.430    2.486    2.518    0.109    0.409
18   60   18   22.415   -5.153    0.429    2.486    2.518    0.109    0.409
19   60   19   22.415   -5.153    0.429    2.485    2.518    0.109    0.409
20   60   20   22.415   -5.153    0.428    2.485    2.518    0.109    0.408
21   60   21   22.415   -5.153    0.428    2.485    2.518    0.109    0.408
22   60   22   22.415   -5.153    0.428    2.485    2.518    0.109    0.408
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Predicted Probabilities  (G=Group, Y=Observation, S=Prediction, E=Error)

OBS    INDEX    G       Y          S          E

1      11     1    2.30652    0.70704    0.29296
2      12     1    2.31994    0.67642    0.32358
3      13     1    2.34472    0.71800    0.28200
4      14     1    2.34969    0.57081    0.42919
5      15     1    2.35195    0.71647    0.28353
6      16     1    2.40306    0.73686    0.26314
7      17     1    2.40521    0.20611    0.79389
8      18     1    2.41964    0.72067    0.27933
9      19     1    2.42080    0.49133    0.50867
10      20     1    2.42389    0.71978    0.28022
11      22     1    2.42675    0.71006    0.28994
12      24     1    2.43058    0.66377    0.33623
13      25     1    2.43302    0.71270    0.28730
14      26     1    2.44992    0.73650    0.26350
15      27     1    2.47261    0.68622    0.31378
16      29     1    2.48225    0.29508    0.70492
17      30     1    2.49065    0.72714    0.27286
18      31     1    2.50613    0.71285    0.28715
19      32     1    2.51939    0.73723    0.26277
20      33     1    2.52940    0.60109    0.39891
21      34     1    2.53060    0.00090    0.99910
22      35     1    2.53481    0.25495    0.74505
23      36     1    2.54859    0.48733    0.51267
24      37     1    2.56980    0.38740    0.61260
25      38     1    2.57786    0.03204    0.96796
26      39     1    2.57990    0.05485    0.94515
27      43     1    2.63380    0.64171    0.35829
28      44     1    2.64818    0.00001    0.99999
29      48     1    2.70363    0.00027    0.99973
30      49     1    2.72978    0.23857    0.76143
31       1     2    1.50669    0.49836    0.49836
32       2     2    1.58658    0.58934    0.58934
33       3     2    1.90177    0.53568    0.53568
34       4     2    1.97146    0.70586    0.70586
35       5     2    1.97397    0.73323    0.73323
36       6     2    2.16792    0.73731    0.73731
37       7     2    2.18882    0.45399    0.45399
38       8     2    2.24610    0.66034    0.66034
39       9     2    2.25091    0.70344    0.70344
40      10     2    2.28768    0.71602    0.71602
41      21     2    2.42577    0.68907    0.68907
42      23     2    2.42691    0.58368    0.58368
43      28     2    2.47978    0.72896    0.72896
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44      40     2    2.58444    0.00071    0.00071
45      41     2    2.59018    0.00000    0.00000
46      42     2    2.60913    0.00000    0.00000
47      45     2    2.64941    0.00227    0.00227
48      46     2    2.67540    0.16853    0.16853
49      47     2    2.69384    0.00000    0.00000
50      50     2    2.74229    0.39769    0.39769
51      51     2    2.82004    0.33055    0.33055
52      52     2    2.88731    0.08714    0.08714
53      53     2    2.90976    0.00001    0.00001
54      54     2    2.93667    0.00011    0.00011
55      55     2    2.93674    0.00469    0.00469
56      56     2    2.94314    0.65241    0.65241
57      57     2    2.96938    0.00013    0.00013
58      58     2    2.98811    0.00090    0.00090
59      59     2    3.05585    0.71182    0.71182
60      60     2    3.29127    0.00010    0.00010

Prediction Probabilities Mean Absolute Deviation

Mean
------------

0.4291364
------------
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Appendix C

Simulation Program Listing

proc iml ;

* define signals for informed and uninformed traders ;

seed = 131406 ;
size = 30 ;

y1 = 2.5 + (.10)*normal(repeat(seed,1,size)) ;
g1 = repeat(1,1,size) ;
y2 = 2.5 + (.50)*normal(repeat(seed,1,size)) ;
g2 = repeat(2,1,size) ;

y  = (y1 || y2)` ;
g  = (g1 || g2)` ;

create main1 var{y1,y2,y,g} ;
append ;
close main1 ;

* do stats on actual values ;

use main1 ;
summary var{y1 y2 y} stat{n nmiss mean std} ;
close main1 ;

* shuffle observations ;

sort main1 by y ;

n = ncol(y`) ;
d = ( j(1,(n-int(n/2)),1) || j(1,int(n/2),0) )` ;
i = j(1,n,1) ;

* define normal distribution function ;

start f(y,mu,s) ;
fv = (1/(s*sqrt(2*3.14159)))*exp((-(y-mu)##2)/(2*s##2)) ;
return(fv) ;
finish ;

s = d ;
k = 0 ;
lf2 = 0 ;

create main2 var{n,k,lf2,lf3,sph,mu1,mu2,sg1,sg2} ;

do until((abs(lf0-lf2)<.0001) | (k > 60) ) ;

sph = (i*s)/n ;
mu1 = (y`*s)/(i*s) ;
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mu2 = (y`*(1+(-1*s)))/(i*(1+(-1)*s)) ;
sg1 = sqrt(((((y-mu1)##2)`*s) )/(n*sph)) ;
sg2 = sqrt(((((y-mu2)##2)`*(1+(-1*s))) )/(n*(1-sph))) ;

s   = sph*f(y,mu1,sg1) / (sph*f(y,mu1,sg1)+(1-sph)*f(y,mu2,sg2)) ;

lf0 = lf2 ;
lf1 = (sph*f(y,mu1,sg1) + (1-sph)*f(y,mu2,sg2)) ;
lf2 = -2*(i*log(lf1)) ;
lf3 = lf2 - (15*log(2*3.14159)) ;

k = k + 1 ;

append var{n,k,lf2,lf3,sph,mu1,mu2,sg1,sg2} ;

end ;

close main2 ;

create main3 ;
append var{s} ;
close main3 ;

data main4 ;
set main1 ;
index = _N_ ;
keep index g y ;

data main5 ;
set main3 ;
index = _N_ ;
keep index s ;

data main6 ;
merge main4 main5 ;
by index ;
if g = 1 then e = 1-s ;
if g = 2 then e =   s ;

proc sort ;
by g ;

proc print data=main2 ;
format lf2 lf3 sph mu1 mu2 sg1 sg2 6.3 ;
var n k lf2 lf3 sph mu1 mu2 sg1 sg2 ;

proc print data=main6 ;
var index g y s e ;

proc means mean ;
title2 'Means Absolute Deviation of Prediction Error' ;

var e ;
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Table 1

Normality Test on Bids and Asks

Percent Rejected at 10% Level

Session Nobs Action Informed Uninformed Combined

9 30 Bid 0.50 0.53 0.63

Ask 0.40 0.53 0.67

10 25 Bid 0.68 0.60 0.76

Ask 0.64 0.40 0.76

11 30 Bid 0.43 0.47 0.63

Ask 0.30 0.30 0.57

12 30 Bid 0.63 0.53 0.77

Ask 0.70 0.40 0.77

14 30 Bid 0.43 0.50 0.73

Ask 0.37 0.37 0.67

15 40 Bid 0.78 0.85 0.95

Ask 0.93 0.73 0.98

16 40 Bid 0.73 0.68 0.98

Ask 0.60 0.78 0.88

17 35 Bid 0.63 0.51 0.57

Ask 0.54 0.57 0.69

All 260 Bid 0.61 0.60 0.77

Ask 0.57 0.53 0.76

Notes:  A Shapiro-Wilk Normality test is performed for each period on the bids and asks.
The percent of the times the test rejects Normality at the 10% level is reported for each
session.
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Table 2

Statistics on Bids and Asks

I.  Paired T-test for Same Means

Action Number of Periods Statistic Probability

Bid 260 7.10 <0.01

LogBid 260 5.04 <0.01

Bought 260 -0.11 0.91

Ask 260 -9.19 <0.01

LogAsk 260 -8.03 <0.01

Sold 260 0.00 0.99

II.  F-test for Same Variances

Action Number of Periods Percent Rejected at 10% Level

Bid 260 0.37

Ask 260 0.37

Notes:  In Part I, a paired Student’s T-test for same means is performed by taking the
informed less the uninformed action for each period within each session.  In Part II, an F-
test for same variances is performed for each period within each session.  The overall
percentage of the times the test rejects the null of same variances at the 10% level is
reported.
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Table 3a

Results of the Mixing Model for Session 16

Informed Group

Variable   N          Mean       Std Dev       Minimum       Maximum
--------------------------------------------------------------------
GROUP     20     1.0000000             0     1.0000000     1.0000000
PRICE     20     1.7555000     0.4763510     0.7900000     2.7700000
--------------------------------------------------------------------

Uninformed Group

Variable   N          Mean       Std Dev       Minimum       Maximum
--------------------------------------------------------------------
GROUP     20     2.0000000             0     2.0000000     2.0000000
PRICE     20     2.0010000     0.2373960     1.4000000     2.1800000
--------------------------------------------------------------------

Maximum Likelihood Results

K       LF2       LF3       SPH       MU1       MU2     SG1       SG2
15   12.699    -14.869    0.520     1.668     2.106    0.437    0.070

Notes:  Descriptive statistics are provided for the informed and uninformed groups.  The
maximum likelihood results after 15 iterations show a likelihood value of 12.70 or -14.87
without the constant term.  The percentage of observations from the informed group is
52%.  The mean and variances from each distribution are also shown.
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Table 3b

Details for Period 1 of the Mixing Model for Session 16

OBS    EXP     ACTION    PRICE    GROUP    NGROUP       S        ERROR

1     16      BID       2.00      2         0      0.29129    0.29129
2     16      BID       1.00      1         1      1.00000    0.00000
3     16      BID       1.50      1         1      1.00000    0.00000
4     16      BID       1.60      1         1      1.00000    0.00000
5     16      BID       1.40      2         0      1.00000    1.00000
6     16      BID       1.65      2         0      1.00000    1.00000
7     16      BID       1.45      2         0      1.00000    1.00000
8     16      BID       1.70      1         1      1.00000    0.00000
9     16      BID       1.80      2         0      0.99954    0.99954
10     16      BID       2.22      1         1      0.22460    0.77540
11     16      BID       2.25      1         1      0.36614    0.63386
12     16      BID       1.00      1         1      1.00000    0.00000
13     16      BID       2.00      2         0      0.29129    0.29129
14     16      BID       2.01      2         0      0.24755    0.24755
15     16      BID       0.79      1         1      1.00000    0.00000
16     16      BID       2.00      1         1      0.29129    0.70871
17     16      BID       2.05      2         0      0.14123    0.14123
18     16      BID       2.77      1         1      1.00000    0.00000
19     16      BID       1.76      1         1      0.99997    0.00003
20     16      BID       2.06      2         0      0.12684    0.12684
21     16      BID       2.10      2         0      0.09718    0.09718
22     16      BID       2.11      2         0      0.09494    0.09494
23     16      BID       2.11      1         1      0.09494    0.90506
24     16      BID       1.70      1         1      1.00000    0.00000
25     16      BID       1.29      1         1      1.00000    0.00000
26     16      BID       2.12      2         0      0.09442    0.09442
27     16      BID       2.15      2         0      0.10331    0.10331
28     16      BID       2.13      2         0      0.09559    0.09559
29     16      BID       1.70      1         1      1.00000    0.00000
30     16      BID       2.16      2         0      0.11024    0.11024
31     16      BID       2.16      2         0      0.11024    0.11024
32     16      BID       2.03      1         1      0.18276    0.81724
33     16      BID       2.16      2         0      0.11024    0.11024
34     16      BID       1.87      1         1      0.97801    0.02199
35     16      BID       2.16      2         0      0.11024    0.11024
36     16      BID       2.17      2         0      0.11963    0.11963
37     16      BID       2.18      2         0      0.13194    0.13194
38     16      BID       2.07      1         1      0.11571    0.88429
39     16      BID       2.00      1         1      0.29129    0.70871
40     16      BID       1.75      1         1      0.99998    0.00002

Notes:  The predictions of the model are compared with the actual data.  The probability of
the action belonging to the informed group is given by the variable S.  The error is the
difference between the predicted probability and the actual state.  The mean error is 0.293.
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Table 4

Mean Absolute Errors for All Sessions

Session Nobs MAD Nobs MAD (filtered)

Bid Only

9 416 .439 218 .404
10 349 .488 236 .498

11 708 .455 543 .437
12 521 .477 376 .459

14 591 .498 340 .529
15 898 .494 645 .462

16 940 .510 469 .500
17 802 .490 483 .498

Ask Only

9 546 .455 352 .435
10 450 .493 324 .462

11 579 .442 378 .397
12 741 .456 322 .388

14 581 .502 255 .480
15 713 .452 415 .427

16 983 .474 636 .463
17 806 .501 416 .499

Notes:  The prediction errors of mixture model are reported for each session based on
mean absolute deviations.  Since there are only two possible groups, the naive prediction
error is .50.  The mean absolute deviations are also reported for a model which filtered out
predictions where the difference in the predicted mean value were less than 20¢.
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Table 5

Comparison of Actual Signals and Estimated Information

Information through Participation Benchmark

                 Estimated Means from the Mixing Model                 

Session Price Optimal Weighted Simple Pooled MinVar Max

Bids Only

9 .343 .350 .366 .382 .344 .467 .370
10 .319 .291 .312 .338 .319 .499 .292

11 .262 .312 .293 .342 .262 .293 .220
12 .298 .277 .275 .363 .299 .443 .265

14 .318 .306 .293 .349 .318 .440 .288
15 .344 .277 .257 .510 .344 .286 .229

16 .266 .225 .241 .278 .266 .266 .202
17 .295 .245 .274 .307 .295 .364 .295

Asks Only

9 .225 .204 .238 .296 .225 .265 .125
10 .241 .243 .228 .305 .241 .273 .181

11 .137 .126 .124 .284 .137 .380 .175
12 .218 .230 .222 .250 .218 .249 .178

14 .215 .184 .212 .270 .217 .233 .152
15 .319 .340 .311 .586 .320 .285 .133

16 .269 .256 .241 .302 .270 .212 .131
17 .276 .254 .251 .310 .277 .236 .184

Notes:  Price along with various estimators are compared to a benchmark which uses the
actual signals provided to traders.  Each time a trader participates in the market, the trader’s
signal contributes to the information in the market.  The mean absolute deviation for each
comparison is reported.  The optimal estimator uses the variance approximation discussed
in section 3.3, and is applied on a period-by-period basis.
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Table 6

Comparison of Actual Signals and Estimated Information

Fully Aggregated Information Benchmark

                 Estimated Means from the Mixing Model                 

Session Price Optimal Weighted Simple Pooled MinVar Max

Bids Only

9 .385 .387 .413 .406 .387 .492 .377
10 .355 .347 .338 .361 .355 .474 .295

11 .272 .312 .288 .339 .272 .336 .205
12 .330 .312 .323 .401 .331 .465 .234

14 .361 .381 .363 .382 .361 .446 .285
15 .360 .274 .291 .488 .342 .298 .224

16 .253 .218 .233 .273 .253 .270 .204
17 .330 .264 .296 .340 .330 .371 .286

Asks Only

9 .139 .112 .140 .185 .139 .252 .227
10 .172 .156 .213 .287 .172 .428 .254

11 .123 .139 .130 .237 .123 .432 .360
12 .112 .143 .138 .190 .112 .208 .201

14 .155 .121 .164 .238 .156 .326 .217
15 .242 .246 .203 .498 .242 .519 .218

16 .219 .219 .215 .246 .222 .282 .182
17 .200 .181 .186 .248 .201 .243 .183

Notes:  Price along with various estimators are compared to a benchmark which uses the
actual signals provided to traders.  The signal for each trader is aggregated regardless of
the trader’s participation in the market.  The mean absolute deviation for each comparison
is reported.  The optimal estimator uses the variance approximation discussed in section
3.3, and is applied on a period-by-period basis.
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