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C. Project Description

Objective

We propose to study the design and implementation of automated agents suitable for
controlling and optimizing resource allocation in large-scale networks. We begin with the
standard assumptions of economics and game theory, which we generalize and enhance
with a framework for logical reasoning. In this way, we create models applicable in more
general economic settings, as well as in network contexts, which we intend to use to
analyze the behavior of intelligent agents that abide by adaptive learning algorithms.

1 Introduction

Recently, there has been a dramatic expansion of the telecommunications infrastructure,
in terms of the degree of connectivity, the bandwidth of communication links, and the
intelligence embedded in the switches. This growth has been paralleled by the potential of
creating a new range of network capabilities, such as software agents that collaboratively
mine and warehouse information on the World Wide Web, multi-media data transfer
and display using shared bandwidth and buffer space, and a financial infrastructure
supporting E-commerce. The challenges associated with these developments, however,
are many — primarily because any realistic resource allocation scheme at this massive a
scale and with such a diverse set of applications cannot rely on complete and common
knowledge of network properties. As a result, the vast body of literature on distributed
computing, where it is often assumed that all but a few “malicious” agents cooperate
according to some commonly known and centrally mandated protocol, is frustratingly
ineffective at network control.

In contrast with computer science, theories on the interaction of complex agents in
dynamic and distributed environments form an integral part of mathematical economics.
In particular, there exist elegant economic models that describe optimal techniques for
allocating resources and coordinating behavior in multi-agent systems, where decisions
are based on local, delayed, and often conflicting information. However, the underlying
mathematical theories are tractable only as long as one assumes infinitely many rational
and homogeneous agents [2, 5]. Furthermore, it has been observed that these economic
analyses lead to efficient-market models that widely deviate from the short-term behavior
patterns observed in real markets [27, 38]. While it remains an open problem to develop
realistic yet mathematically rigorous market models, it is possible to build computational
economies in which to study more general economic assumptions, such as lack of common
knowledge, deductive and inductive rationality, and heterogeneous agents [4]. Moreover,
based on the ongoing developments in the logic community — specifically non-monotonic



logics that incorporate models of belief-revision [1] and the logic of games [44] — it is
also possible to formalize the strategic reasoning of intelligent agents, something which
standard economic theories fail to consider.

The proposed research is inherently interdisciplinary, as it lies at the intersection of
recent advances in telecommunication networks, computational economics, and logic. We
advocate the design and implementation of network protocols which utilize intelligent and
adaptive computational agents that learn to manage resources efficiently in the face of
limited information. Initially, we rely on heuristics developed by economists to model the
behavior of our agents; for example, our work builds on the model of bounded rationality
and inductive learning discussed in Arthur [3]. Ultimately, however, we are interested
in providing a rigorous treatment of the reasoning behavior of automated agents by
using belief-revision logics to model belief-based learning (e.g., Bayesian updating). Our
agents interact in simulated network economies that are built within a powerful software
infrastructure called CAFE (Complex Adaptive Financial Environment), which provides
a reliable tool for the evaluation of a wide class of agents. The long-term goal of the
proposed research is the dissemination of automated agents (provably) suitable for control
and optimization in large-scale, geographically-distributed networks, without the benefit
of common knowledge of the state of the system.

1.1 Our Theoretical Model

Network control and optimization problems such as flow control and routing are resource
allocation problems. Consequently, at first glance, it appears that economic theory, and
in particular, the theory of games, can be directly applied to networking. Independently,
others have also made this observation — in economics, see, for example, Varian [55] and
Shenker [53]; in game theory, see, for example, Lazar et. al. [31, 36]. Upon closer scrutiny,
however, it is revealed that this relationship is not so straightforward. In particular,
fundamental assumptions on which economic theories are based are not valid in network
environments — specifically, common knowledge, rationality, and homogeneity of agents. !
One of the primary goals of the proposed research is to investigate precisely to what extent
equilibrium behavior depends on these assumptions. Towards this end, we introduce our
model of decision-theoretic problems (i.e., games), which enhances standard economic
models in two ways: (i) provides a logical framework with which to analyze the behavior
of intelligent learning agents, and (ii) generalizes traditional assumptions in order to
render economics applicable in network contexts.

Our model of games, in its most general form, is described as follows. We assume
a finite set of (possibly heterogeneous) agents A, where each n € N is equipped with
its own internal model of the decision theoretic problem it is facing. Typically, this
model consists of a set of possible states of the world; or this model may be a probability

'Tn fact, it is debatable whether or not these assumptions hold true in economic environments; thus,
our investigation has the potential to influence economic theory as well.



distribution over such a set. Each state is a pair consisting of (i) a picture of the agent’s
beliefs about the world, and (ii) a picture of how the agent believes that other agents see
the world. 2 Let M be the set of all such possible models. Associated with each agent
n is a set S, of possible actions (or pure strategies) and a payoff function 7, on S, x M
such that given a model m and action s, the payoff is m,(s,, m). Initially, each agent
has an internal model m? and a belief-revision function p, such that given internal model
m! at time ¢, and new information p*! at time ¢ + 1, the agent’s revised model after
taking this information into account is p,(mk, u*1).

This model can be restricted for a particular domain to account for certain domain-
specific knowledge. For instance, in the domain of telecommunications, an appropriately
restricted model is one in which software agents are viewed as playing network games,
where agents make decisions pertaining to the management of network resources. In
such games, the underlying payoff structure is inherently unknown; in particular, agents
cannot precisely describe their preferences in terms of the trade-off between throughput
and congestion delays, given the increasingly dynamic nature of large-scale computer
networks. Thus, learning is essential, since it provides a robust and efficient means of
adapting to unexpected environmental changes. In our framework, the internal model
which a network agent maintains describes what that agent believes its payoff function
to be at any time, and via belief-revision techniques, the agent learns over time, thereby
improving the estimate of its payoff function.

Our model is also suitable for applications in which the agents are divided into two
or more classes, such as producers and consumers in an economy. In particular, the
CAFE system incorporates our proposed framework as well as standard economics, with
computational agents (e.g., consumers, producers, and speculators), resources, and prices
as the essential components of a CAFE economy. All CAFE agents maintain private models
describing their beliefs about the future prices of the various resources. The role of an
agent is to decide on some quantity of resources to demand or supply, where this decision
is motivated by the intent of maximizing individual utility with respect to a private belief
system. This belief system is updated regularly in the face of newly observed information.
Using CAFE, our goal is to study the design of mechanisms by which we can influence
the behavior of agents such that the (selfishly-motivated) decisions taken by individuals
jointly yield globally desired properties.

1.2 Statement of Goals

Our model provides a unified framework in which to study the long-term behavior of a
population of individuals, and moreover, to determine whether or not certain globally
desired properties are satisfied, such as fairness, stability, and convergence to equilibrium.
More specifically, the goals of our research program are as follows:

2Ttem (ii) is relevant for issues like common knowledge of rationality, but for rationality simpliciter,
item (i) is adequate.



1. Reasoning about Games: Given a mathematical specification of a game (or
class of games), and rules for strategic decision making for each agent specified in a
game logic, to provide efficient decision procedures that determine if the asymptotic
play of the game satisfies the desired properties. If it does not satisfy one or more
of these properties, the procedure should provide a counterexample in terms of a
sequence of plays that results in violation of the property.

2. Learning Algorithms: Given a mathematical specification of a game (or class of
games), to provide learning algorithms based on a partially-observable history of
past plays that allow agents to efficiently make optimal decisions. These algorithms
will be analyzed in terms of their computational-efficiency, the complexity of the
space of necessary observables, and their competitiveness (with respect to some
clairvoyant agent) and/or some measure of regret (external or internal). Certain
games may not yield any such learning algorithms under the usual assumptions
of game theory (e.g., DRIP, D = Deterministic, R = Rational, I = Information
independence and P=Predictive); we shall provide an exact characterization of
such games.

3. Mechanism Design: Given a set of desired global properties which describe the
behavior of a population of agents operating under some global dynamics (expressed
in terms of a set of constraints), to devise mechanisms (i.e., utility functions and
strategy spaces) such that the long-term behavior of agents. We shall also formulate
metrics to classify these mechanisms in terms of their efficiency, convergence rate,
and dependence on partial information and/or common knowledge.

These goals are successively more complex and form a natural progression; thus, we will
start from the first goal and enrich our research methodology as we encounter each step.

2 The Failure of Rationality

Throughout this proposal, we use the Santa Fe bar problem as a motivating example.
In its original formulation, this problem is an abstraction of the problem of designing
efficient network congestion control algorithms, and moreover, in an extended form can
be viewed as an abstraction of the problem of routing network packets over a system of
parallel links. Simple analysis of this basic resource allocation problem reveals the short-
comings of current economic theory; in particular, this section focuses on the assumption
of rationality. Later, we propose solutions based on forms of bounded rationality and
inductive reasoning which we validate using CAFE tools. Our research may also be of
interest in economics since this problem arises in a number of a real-world situations,
ranging from farmers polluting common water supplies, to fisherman fishing in common
waters, to other versions of the tragedy of the commons [30].



2.1 The Santa Fe Bar Problem

The Santa Fe bar problem (SFBP) was introduced by Brian Arthur [3], an economist at
the Santa Fe Institute. Here is the scenario:

N [say, 100] people decide independently each week whether to go to a bar that
offers entertainment on a certain night ... Space is limited, and the evening
is enjoyable if things are not too crowded — especially, if fewer than 60 [or,
some fized but perhaps unknown capacity c] percent of the the possible 100 are
present ... a person or agent goes (deems it worth going) if he expects fewer
than 60 to show up or stays home if he expects more than 60 to go. Choices
are unaffected by previous visits; there is no collusion or prior communication
amonyg the agents; and the only information available is the number who came
in past weeks.?

Arthur first analyzed the Santa Fe bar problem assuming only that the inhabitants
of Santa Fe are both rational and homogeneous. He noted the following. Let the utility
of going to an uncrowded bar be equal to 1, while the utility of going to a crowded bar
is equal to —1, and finally, the utility of staying home is 0, regardless of the state of the
bar. Now, if an agent believes that the bar will be crowded with a probability p, then
his best-reply is to go to the bar if p < 1/2 and to stay home if p > 1/2. However, since
the agents are homogeneous, all their beliefs and best-reply are identical. Herein lies a
paradox. If all the agents believe that the bar will be undercrowded with probability
p < 1/2, then, in fact the bar will be empty with probability 1; in contrast, if all the
agents believe that the bar will be undercrowded with probability p > 1/2, then the
bar will be full with probability 1. * The conclusion is that there is no common set of
best-replies and beliefs that the agents can learn over time which maximizes utility.

As mentioned earlier, SFBP is analogous to a network flow control problem which
a software agent might face in deciding whether or not to transmit data at a given
time. Characteristic of both the flow control problem and SFBP is the fact that since
the decision of any one agent does not have significant impact on the state of the world
obtained, the utility obtained by an individual agent can be viewed as arising via the effect
of an externality.” An interesting extension of SFBP is choosing the precise amount of
data to transmit at a given time, rather than merely deciding whether or not to transmit.
Again the total flow imposes a cost on all agents which is modeled as an externality, but
in this case the utility obtained is proportional to both the amount of data transmitted
and the cost incurred. Economically, these network flow control problems address the
management of resources in situations in the face of excess demand.

3The problem was inspired by the El Farol bar in Santa Fe which offers live music on Thursday nights.

“In the case where p = 1/2, agents attend the bar and stay at home with equal probability. It is
straightforward to show, however, that this condition is not sustainable.

5An esternality is a standard economics term used to describe third-party effects, such as pollution.



A further extension of SFBP, which we dubbed the New York City bar problem [15, 25],
considers this problem in a city with many bars. In this case, the networking analog is
a routing problem which is concerned with the choice of a route (or vector of routes) by
which to transmit a fixed amount of data so as to minimize overall congestion. In contrast
to the flow control problems discussed above, the network routing problem corresponds
to a situation in which globally, there is excess supply. In this case, the challenge is
to build automated agents that independently learn the optimal distribution channels,
without the benefit of central management.

2.2 Best-Reply Dynamics

The Santa Fe bar problem is a non-cooperative game. As such, it can be expressed
formally as a repeated strategic form game. The players in this game are the inhabitants
of Santa Fe; notation N' = {1,..., N}, with n € N. For player n, the strategy set
Sn = 40,1}, where 1 corresponds to go to the bar and 0 corresponds to stay home. The
payoffs obtained by a given player depend on the particular strategic choice taken by
that player and an externality. In particular, in this formulation, the Santa Fe bar game
is a discretization of a simple finite externality game in the sense of Friedman [20].

Let s!, be the strategic choice of player n at time ¢ and let sf, = 3=, 5. In addition,
let ¢ < N denote the capacity of the bar. The externality f depends on s}, and ¢ as
follows: if the bar is undercrowded (i.e., si, < ¢), then f(s;) = 0; on the other hand, if
the bar is overcrowded (i.e., sh; > ¢), then f(sh;) = 1. Finally, let 0 < v, < 1 denote the
value to player n of attending the bar, and without loss of generality assume a,, < ay,41.
Now the payoff function for player n is given by m,(s!, sh/) = a,, — f(s%), if s!, = 1, and
ma(st, shy) = 0, otherwise. The expected payoff for player n at time ¢ is computed in
terms of the true probability p, that the bar is undercrowded at time ¢:

¢ ¢ et
t ¢ o) Phon — (1 —ph)(1 —ay) if st =1
Ept [ (35 53)] = { 0 otherwise

Let p; =1 — «,. Note that a given player n is indifferent between the two strategies
whenever ph, = pi, since E[m, (1, s,)] = E[mn(0, s)] = 0. The sequence of probabilities
{p} is unknown to any one player, however, since the players operate independently.
Instead, associated with each player n is a private sequence {p%} of probabilities, or
beliefs, that the bar will be undercrowded at time ¢.

Definition 2.1 The Santa Fe bar game is uniform iff for alln # m e N, a,, = . ©

In what follows, we formalize the intuitive argument in Arthur [3] pertaining to the
oscillatory behavior that arises via best-reply dynamics in the Santa Fe Bar game. We
begin by explicitly defining the necessary assumptions.

6In [26], we consider the non-uniform case; we analyze stability results obtained via simulations.



Definition 2.2 A given player n is said to be rational at time t iff

st € arg max m,(sn, ml,)
Sn€Sn

In other words, player n is rational at time ¢, if the strategic action taken by player
n is a best-reply to his beliefs about the state of the world (notation m!). Now player n
utilizes Cournot best-reply dynamics [11] iff for all times ¢+ 1, player n assumes that the
outcome obtained during round ¢ will be the outcome of round ¢ + 1, and consequently,
he plays a best-reply to the outcome of round ¢. Note that this corresponds to the
belief-revision function specified in our general model.

Definition 2.3 A given player n is said to employ best-reply dynamics iff for all t,
player n assumes that mL™ = s'., and moreover, player n is rational. In particular, if

player n utilizes best-reply dynamics, then

t+1 t
sitl € arg max T (Sn, Sir)

Theorem 2.1 In the uniform Santa Fe bar game, learning via best-reply dynamics does
not converge.

Proof 2.1 (Sketch) Assume that all players employ best-reply dynamics. If s, < ¢,
then the best response at time ¢ + 1 for all n is st'' = 1. But then sﬁl > ¢, and now
the best response at time ¢ + 2 for all n is st™ = 0. Now, once again sf; < c¢. This
patterns repeats itself indefinitely, generating oscillatory behavior that is far from the
desired equilibrium. Finally, note that if ever s, = ¢, this situation cannot persist since
it gives rise to an unstable equilibrium. In particular, the best response to s, = ¢ is

mixed strategy (1/2,1/2), but Pr[sif! = ... = sf¥ =] = 0 as k — 0.

In this section, we demonstrated that it is inconsistent to conclude that rational
and homogeneous agents in the Santa Fe bar problem are capable of even very weak
forms of belief-based learning. Moreover, if all players are rational, even if they learn
via Bayesian updating, play still does not converge to equilibrium behavior [26]. These
negative results are part of a more general phenomenon also noted by Nachbar [42] and
Foster and Young [19] who state that repeated play of normal form games among rational
players does not converge to a Nash equilibrium, unless players’ initial beliefs coincide
with an equilibrium. Our negative result states that in the Santa Fe bar game, assuming
the stated conditions, no learning algorithm will ever converge to Nash equilibrium,
even if players’ initial beliefs coincide with an equilibrium. This theorem can be further
generalized to show that the weaker property of calibrated beliefs [13] can also never be
achieved. Since calibrated learning gives rise to correlated equilibrium [17], no learning
algorithm will ever converge to the more general concept of correlated equilibrium either.



The formalization presented in this section revealed that Arthur’s original intuition
was founded on the interplay of homogeneity and rationality. However, this analysis
failed to incorporate any notion of knowledge or reasoning on the part of the agents. In
the next section, we discuss the logical and experimental tools which we intend to use to
resolve the paradox inherent in the bar problems.

3 Tools

We intend to use two types of tools in the pursuit of our research program. In particular,
we draw from a set of logical tools, with which we plan to investigate informational
requirements, and a set of experimental, or computational, tools with which we study
boundedly rational, heterogeneous agents.

3.1 Logical Tools

There are well-studied logics of knowledge applicable in distributed contexts which can be
used to calculate what knowledge an agent has at a given time and how an agent should
use new information to revise its current model. These logics enter into our model in two
important ways.

In [44, 43], the cake cutting algorithm is used as a paradigm for a game-theoretic
situation in which every player has a winning strategy. In this problem, a set of agents
must divide a cake among themselves in a manner which is clearly seen by all the agents
to be fair. The algorithm ensures that no agent may succeed in satisfying its greed at
the expense of fairness for the other agents. This is possible because although it seems
that the greed of some agents may prevent other agents from obtaining their fair share,
in fact, the goals of the different agents are compatible. A logic of games is used to prove
correctness of this algorithm. This logic is closely related to dynamic logic, but it differs
in that each action is associated with an agent. There is a complete axiomatization and
decidability result for the propositional case (see [44]).

Logical considerations also enter our model at the stage of belief revision. In a purely
logical framework, the Alchourron, Gérdenfors, and Makinson (AGM) axioms describe
boundary conditions on revision functions which various agents may describe [1]. Their
model is suitable for investigating belief revision when newly received information is
incompatible with current beliefs. The AGM axioms have been studied extensively, and
various completeness results have been proven (see, for example, Grove [28]). The revision
process is necessarily non-monotonic, and Grove uses an ordering among possible models
to achieve this non-monotonicity. In [47], it is shown how the revision process can be
made more efficient by revising only that portion of an agent’s beliefs which are in the
same domain of information as the new information; e.g., new information obtained from
the dentist about the health of one’s teeth should not affect beliefs about Alan Greenspan.



In a purely arithmetical situation, the results contained in [50] and [46] describe
how new (but consistent) information results in the revision process, leading ultimately
to stability and consensus. These results come as a sort of culmination of a strain of
thought which began with the fundamental paper by Aumann [6], with further results by
Bacharach [7], Cave [9], and Geanakoplos and Polemarchakis [24]. Typically, an agent
works with knowledge rather than belief so that the actual state of the world is among
the agent’s possible models. As the agent receives more information, the set of models
is culled and the information becomes more refined. This theme is also followed in [46].
Moreover, in [48], some of these techniques are extended to fuzzy situations.

3.2 Experimental Tools

For experimentation purposes, we intend to use a Java-based system called CAFE [16]
(Complex Adaptive Financial Environment), designed for the simulation of complex
adaptive systems. Examples of such complex interactions occur in market economies,
biological systems, and potentially among Internet software agents. The prototype of
the CAFE system is described in detail in Even and Mishra [16]. Inherent in this system
is an object-oriented design that provides an easily extensible framework in which to
simulate the behavior of agents that interact in complex ways. The top-level structure is
the Agent class, of which the sub-classes Patron and Bar are applicable in simulations
of the bar problems. In the study of the bar problems, two types of agents are derived,
namely patrons and bars, both of which are modeled as boundedly rational economic
agents that act in a way so as to maximize utility.

The mathematical description of CAFE closely resembles classical economic models.
Consequently, standard economic equilibrium analysis, assuming for example continuous
and differentiable utility functions, can be applied to CAFE. The computational model
of CAFE, however, is far richer in that it does not depend on these assumptions, and
moreover, it does not assume that economic agents are either homogeneous or rational.
Since modeling of networks games using traditional economic assumptions may give rise
to control protocols that result in undesirable behavior, we utilize a computational model
in the CAFE system which allows for heterogeneous and boundedly rational agents, and
is suitable for network control.

3.3 The Computational Model

The computational model of CAFE is based on standard economic models; however, this
model incorporates an important extension, namely the introduction of a private belief
system for each agent. Moreover, it is assumed that agents act in a way so as to maximize
utility with respect to their beliefs. The belief systems of the agents are represented by
sets of predictor functions, which gives rise to agents that exhibit bounded rationality in
the sense discussed in Arthur [3].



This section describes the particular choices of predictor functions that comprise the
computational model of CAFE in terms of the bar problems, where the producers in the
economy are the bars, and the consumers are the patrons. The agents employ bounded
rationality and inductive learning to predict the attendance at the bars. In CAFE, the
bounded rationality of the agents is modeled by a pool of simple functions which utilize
historical data to predict attendance at the bar. For example, some predictor functions
are trend-based, while others depend on adaptive expectations, while still others make
constant predictions. The predictor functions correspond to the beliefs of agents in belief-
based learning models.

Let G = {g1,...,9x} denote the set of predictor functions. Initially, the agents
(randomly) select a fixed number of predictor functions from the pool; say {g;1,- - ., g}
is the selection for patron ¢, with £ << K. Throughout the simulation, the agents
monitor the accuracy of their predictor functions. Any predictor functions that are
consistently inaccurate are discarded and replaced with alternatives from the original
pool. At time ¢, the attendance predicted at the bars by patron ¢ is the output of the
currently most accurate predictor function, say g;*. Let h; denote the attendance history
at bar j through time ¢. If g;*(h}) > ¢, then the optimal predictor function for patron i
at time ¢ predicts excess demand at bar j. Otherwise, If g;*(h}) < ¢, then the optimal

13
predictor function for patron ¢ at time ¢ predicts excess capacity at bar j.

4 Success of Bounded Rationality

In light of the paradox inherent in SFBP, Arthur’s insight was to propose the study of
boundedly rational agents who use inductive learning to build expectational models. By
simulating the behavior of such agents, Arthur obtained an efficient solution to SFBP in
which the overall attendance at the bar stabilized near capacity. In contrast to standard
solutions to distributed resource allocation problems which involve pricing congestible
resources [55], this approach depends only on learning to play equilibrium strategies in
repeated games. The CAFE system, however, is suited for the study of externality effects
as well as direct pricing mechanisms in repeated games. In this section, we present the
results of preliminary simulations of the bar problems which demonstrate the potential of
our model to afford solutions to general problems of resource allocation in decentralized
environments.

4.1 Simulation Results

This section presents the results of preliminary simulations of the bar problems. In the
original SFBP, there is one bar of capacity 60, and there are 100 patrons. Figure 1
plots the attendance over time of agents that employ bounded rationality. Note that
attendance stabilizes near the capacity of the bar.

10



One-bar Problem, Excess Demand
100 T

Bar1l —-—

80 b

60

Attendance

40 1

0 50 100 150 200
Time

Figure 1: Attendance vs. time at one bar assuming excess demand

We now consider the two bar problem. Initially, this problem is studied in two
scenarios, the first assuming excess supply (i.e., more seats in the bars than patrons),
and the second assuming excess demand (i.e., more patrons than seats). Assuming
excess supply, we find that boundedly rational learning is sufficient for obtaining an
efficient solution to the two-bar problem. This scenario corresponds to a network routing
problem in which the capacity of the network exceeds the (fixed) demand of the users.
The results of simulations of this problem assuming 100 patrons and two bars, each of
capacity 60, are depicted in Figure 2. Note that the system reaches equilibrium with
each bar attracting a population in the neighborhood of 50 patrons.

Two Bar Problem, Undercapacity, No Pricing
T

120 T

80 - Barl — b

Attendance

1
0 50 100 150 200
Time

Figure 2: Attendance vs. time at two bars assuming excess capacity
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Two Bar Problem, Overcapacity, No Pricing

Attendance

Time

Figure 3: Attendance vs. time at two bars assuming excess demand

The ever-growing interest in the Internet, however, shows that it may not be realistic
to assume an excess supply of network resources. Since our research is geared towards
network applications, the second scenario that is considered assumes excess demand,
but in this case the results are not so promising. In particular, bounded rationality is
not sufficient for obtaining an efficient solution to the two-bar problem assuming excess
demand. For simulation purposes, the population is set at 150 and the capacity of each
bar is equal to 60. The results are presented in Figure 3. While this mechanism seems
to be adequate for either population control at one bar or population routing between
two bars, it is insufficient for achieving both simultaneously.

Two Bar Problem, Overcapacity, Fixed Pricing
120 T T T T T

80 - Barl — o

Attendance

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time

Figure 4: Attendance vs. time at two bars with fixed pricing and excess demand
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We address this problem by introducing pricing into our simulations in order to curb
demand. We simulate the two-bar problem assuming two distinct pricing regimes: fixed
and competitive pricing. The results demonstrate the ability of pricing to control demand
as well as the potential of pricing as a tool for guaranteeing different qualities of service
in multi-media networks.

Two scenarios are considered. In the first case, the price of both bars is set to 1 (see
Figure 4). This scenario demonstrates that the introduction of pricing in fact successfully
controls demand. Enough of the patrons are “priced out” of the market so that when the
remaining patrons choose bars using bounded rationality the system reaches equilibrium.
In the second scenario, the price of one bar is set to 1, while the price of the second bar
is set to 2 (see Figure 5). Note that the more expensive bar draws approximately half
the population of the cheaper bar. These simulation results demonstrate the potential of
pricing as a tool for guaranteeing different qualities of service in multi-media networks,
since higher priced services are requested less often, thereby making it possible to meet
maximal delay requirements.

Two Bar Problem, Overcapacity, Fixed, Disparate Pricing
120 T T T T T

100
80 |-

60 ‘M ‘

Attendance

1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
Time

Figure 5: Attendance vs. time at two bars with varied pricing and excess demand

The final simulations of the two-bar problem consider competitive pricing, a situation
in which each bar independently varies its price. Each bar maintains its price as long
as its population is within a pre-defined neighborhood of its capacity. If it is below this
range it lowers its price, and if it is above, it raises its price. Figure 6 shows that the
bars reach equilibrium with a population of approximately 50. Figure 7 show the prices
of the bars as they vary with time. Note that when the bars reach equilibrium, their
prices remain fixed.
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120

Two Bar Problem, Overcapacity, Competitive Pricing
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Figure 6: Attendance vs. time at two bars with competitive pricing and excess demand

The simulations presented in this section exemplify the relationship between the many
aspects of our research program. In particular, we are both interested in the design of
automated intelligent agents which exhibit optimal performance in network environments,
as well as the design of mechanisms which motivate agents to behave efficiently. These
problems are inherently intertwined; we propose to attack them by incorporating aspects
of networking, learning in repeated games, and logic.

5 Related Work

Presently, there is an expanding body of literature on theory and systems which apply
economic ideas to control and optimization problems in networking. For example, Varian
and MacKie-Mason [55] describe simple pricing mechanisms that induce the efficient use
of network resources, from the point of view of network service providers. In addition,
Shenker [54] advocates the use of implementation theory (see, for example, Myerson [41]),
in an effort to induce socially desirable network operating points in the presence of
non-cooperative and self-interested users. Moreover, Korilis et. al. [35] study pricing
mechanisms as a means of achieving Pareto optimality. Regarding systems, SPAWN is a
computational economy that was designed at Xerox PARC to manage and coordinate
distributed tasks on multiple processors [56]. Similarly, WALRAS is an asynchronous
distributed system developed jointly at Michigan and MIT which operates via a market
pricing mechanism [57]. In contrast, we propose to conduct conduct extensive studies of
learning algorithms and mechanism design using CAFE, and moreover, we later intend to
disseminate automated agents which abide by these algorithms on a large-scale network,
such as the Internet.
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Two Bar Problem, Overcapacity, Competitive Pricing
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Figure 7: Price vs. time at two bars with competitive pricing and excess demand

There is also a vast literature on learning through repeated play of games, and we make
no attempt here to provide a detailed review; see the review by Fudenberg and Levine [23]
for a comprehensive discussion. The work on learning falls roughly into two camps.
The “high-rationality” approach involves learning algorithms which aim to predict the
strategies of their opponents, and myopically optimize with respect to those predictions.
The prediction methods can be Bayesian (as in Kalai and Lehrer [33]), calibrated (as in
Foster and Vohra [18]), or consistent (as in Fudenberg and Levine [22, 21]). Typically
the asymptotic play of such algorithms are either correlated or Nash equilibria. Since
these algorithms depend on knowledge of the underlying structure of the game, they are
not applicable in the network contexts which we are considering here. In contrast, the
“low-rationality” approaches to learning are concerned with situations similar to that
which we consider here; in particular, agents have no information other than the payoffs
which they receive for the strategies they employ. For examples of such work, see Roth
and Erev [52], Erev and Roth [14], Borgers and Sarin [8], Mookerji and Sopher [40], and
Van Huyck et. al. [32]. The focus of these papers is typically on matching the results of
human experiments. We focus instead on the nature of asymptotic play.

6 Research Methodologies

The Santa Fe bar problem forms the bare bones of an analogy between economics and
network control and optimization. However, in the absence of a well-understood solution
to this problem, this relationship cannot be exploited. Thus, we are interested in gaining
a thorough understanding of the paradox inherent in SFBP, and further applying this
understanding to solving the generalized class of bar problems and other more general
problems which are characterized by our model.
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The main outcomes of our research are expected to be (i) a thorough understanding
of the foundations for verification, learning schemes and mechanism design for network
games, and (ii) enhancement of experimental tools, namely CAFE, and implementation
of the resulting algorithms on large scale networks. The research on the foundational
work will be disseminated through publications in journal and conference proceedings.
The work on implementation will be carried out and evaluated in collaboration with an
industrial partner. We have set for ourselves the following research milestones:

Year 1: Foundational work on the logic of games. Design and implementation of
verification algorithms. Test software on the current version of CAFE.

Year 2: Foundational work on learning schemes. Implementation of selected subset of
these algorithms. Perform experiments using these algorithms on enhanced version
of CAFE.

Year 3: Foundational work on mechanism design. Design efficient mechanisms for
network games. Empirical verification with CAFE. Finally, transfer the technology
to a large-scale network such as the Internet.
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7 Results from Prior Support

7.1 Bud Mishra

1. Reactive Algorithms in Robotics: B. Mishra. 1995-98, National Science Founda-
tion (IRIS), IRI-9414862, $ 228,993.

2. CISE Research Instrumentation: P. Dasgupta, Z. Kedem, B. Mishra, K. Palem and
D. Shasha. 1995-96, National Science Foundation (CISE), CDA-9421935, $ 75,429.

Ph.D. Theses

[1] This dissertation developed under the supervision of B. Mishra studies a number of problems
arising in the context of grasping and fixturing, various measures of goodness of the grasp
and a new algorithmic approach (“reactive robotics”) to build specialized grippers.

[2] This dissertation developed under the supervision of B. Mishra focuses on the automatic
development of hybrid (combining discrete as well as continuous plant models).

The resulting “control compiler,” called CONTROL-D, has been successfully used to build
a controller for a food-manufacturing system and a gait-controller for a walking machine.

The following additional Ph.D. theses have been developed under the supervision of
B. Mishra and deal with real-time system applications for robotics (C. Frenandes, G. Ko-
ren, N. Silver, L. Salkind and D. Clark), algorithmic algebra (G. Gallo and P. Pedersen),
complexity of computational logic (L. Ericson), theory of learning (P. Caianiello) and
parallel debugging systems (A. Dinning).

Other Results

[5, 6, 7, 8, 9] These series of papers develop the theory underlying the CONTROL-D system,
used for automatic development of hybrid controllers (combining discrete as well as con-
tinuous plant models).

[10, 11, 12, 13] These series of papers develop the theory and applications of the “reactive
robotics” scheme that can be successfully used to build grippers and hands, where sen-
sor values are used to determine immediate actuation in a simple table driven manner.
Several grippers based on these ideas have been successfully implemented.

[14, 15, 16] These and some related sequence of papers study the problem of analyzing and
synthesizing efficient and optimal grasps with multi-fingered robot hands and clamps (the
fixturing problem). A related problem studied deals with the problem of continuously
reorienting a grasped object. Recent work also deals with the so-called “reactive” algo-
rithms with special applications to manufacturing.
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7.2 Rohit Parikh

1. “A Logical Study of Distributed Transition Systems”, with Lodaya, Ramanujam
and Thiagarajan. Information and Computation 119 May 1995, 91-119.

We study a number of logics which formalize transition systems and prove decidability
undecidability and completeness results.

2. “Vagueness and Utility: the Semantics of Common Nouns” in Linguistics and
Philosophy 17 1994, 521-35.

We point out that to date there do not exist satisfactory logics or semantics for vague
predicates. We show that these predicates are person dependent, i.e. the way they are applied
varies from person to person and also from occasion to occasion. Hence a theory is needed of
why they are useful in communicatio and do not lead to misunderstandings. We show how there
are settings where despite some differences in application by the various individuals involved,
communication is useful. These are the settings in which we do in fact use these predicates,
avoiding them in other areas where such sturdiness does not obtain.

3. “Logical omniscience”, in Logic and Computational Complexity Ed. Leivant,
Springer Lecture Notes in Computer Science no. 960, (1995) 22-29.

Current logics of knowledge have the property that under their definition of what it means
for 7 to know some formula A, ¢ knows all valid formulas and also the consequences of anything
that ¢ knows. This is implausible and to find more plausible definitions of knowledge is the
problem of logical omniscience. We make some algorithim based suggestions.

4. “Language as social software” (abstract) International Congress on Logic, Method-
ology and Philosophy of Science (1995), page 417. To appear in Future Pasts, Ed. Floyd
and Shieh, Harvard U. Press, 1998.

One can view language as playing the role of a system of signals to facilitate social behaviour.
It turns out that this view is very flexible and can explain various philosophical puzzles like
Searle’s Chinese room puzzle or Quine’s indetermincy of translation thesis.

5. “Knowledge based computation (Extended abstract)” in Proceedings of AMAST-
95 Montreal, July 1995, Edited by Alagar and Nivat, LNCS no. 936, 127-42.

A short survey of work in this area done to date.

6. “Topological Reasoning and The Logic of Knowledge” (with Dabrowski and Moss)
Annals of Pure and Applied Logic 78 (1996) 73-110

While it is true that one’s knowledge depends on one’s evidence, traditional definitions
of knowledge leave out the fact that one can gather or improve one’s knowledge. E.g. a
measurement of some quantity can be made more accurate by using better instruments. This
observation allows us to develop a logic with two modalities, one for knowledge and the other
for effort. Some topological notions like closed or perfect can be defined in this logic. We prove
axiomatizations and provide completeness results.

7. “How far can we formalize language games?” in The Foundational Debate edited
by DePauli-Scimanovich, Kéhler and Stadler, Kluwer Academic (1995) pp. 89-100.

Wittgenstein’s views in the Philosophy of Mathematics are examined and shown to be very
modern in spirit. We raise the question how far one can provide formal versions of language
games as a way of making certain problems more explicit.

8. “Vague predicates and language games”, Theoria Spain, vol XI, no. 27, Sep 1996,
pp- 97-107.

Further research along the lines of #2, above.

9. “Belief revision and language splitting” to appear in Proc. ITALLC, CSLI 1998.

The celebrated AGM axioms for belief revision allow the trivial revision under which all
old information is lost. We show how we can incorporate a formal notion of relevance which
allows one’s information to be split uniquely into a number of disjoint subject areas. Revising
information only in those areas where new information is received blocks the trivial revision.
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