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Abstract

We formulate a microscopic model of the stock market and study the re-
sulting macroscopic phenomena via simulation. In a market of homogeneous
investors periodic booms and crashes in stock price are obtained. When
there are two types of investors in the market, differing only in their memory
spans, we observe sharp irregular transitions between eras where one popu-
lation dominates the market to eras where the other population dominates.
When the number of investor subgroups is three the market undergoes a
dramatic qualitative change - it becomes complex. We show that complexity
is an intrinsic property of the stock market. This suggests an alternative to
the widely accepted but empirically questionable random walk hypothesis.



Introduction

Most economic and financial models of the stock market discuss market
equilibrium. According to the efficient market theory equilibrium stock prices
reflect all the available information and all investors’ preferences [1-6]. The
notion of static equilibrium is in sharp contrast to the dynamic nature of the
real market. The changes in stock prices are usually explained by asserting
that new information is constantly supplied to the market and hence the
equilibrium point is continuously shifting. According to the efficient market
theory, since all the known information is already reflected in the current
stock price, only new information moves stock prices. Then, the argument
goes that because the new information is random we observe (or should
observe, according to efficient market theory) prices following a random walk.

Empirical evidence, however, has been accumulating against the random walk
hypothesis [7-12].

In this paper we suggest a different explanation for the dynamic nature
of the stock market. We show that in a market where investors use ex-post
returns in order to estimate future returns on the stock, a static state may
never be approached, even though no new external information is introduced.

We study the long range dynamics of a market of homogeneous investors,
a market with two investor populations differing only in their memory span
(the time span they look back at past returns), and a market with three
investor populations. We show that it suffices to have three investor popula-
tions, differing only in their memory spans, in order to generate realistically
complex price behaviour, even without any external influences (new infor-
mation). The complexity is shown to be an intrinsic property of the market.

In section 1 we present the framework of our microscopic stock market
model. As has been shown in [13-15] the homogeneous investor market,
which is analougeous to a mean-field approximation, leads to an unrealistic
macroscopic behaviour consisting of periodic booms and crashes in the stock
price. The length of the boom-crash cycle is determined by the homogeneous
memory span. This result is presented in section 2.

When there are two investor populations, with different memory spans,
we observe the following different scenarios :

a) One population gains control over most of the money in the
market and exclusively dictates the length of the boom-crash cycle.

b) One population becomes dominant, dictating market behaviour.
After some time the second population abruptly takes over the mar-
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ket, and an era of dominance of the second population begins. This
era continues untill the first population takes over again, and so on.
Hence, we observe alternating distinct eras of dominance.

¢) One population gains control over most of the money in the
market, however, the market behaviour is surprisingly dictated by
the other very poor population.

The ratio between the memory spans of the two investor types deter-
mines which of these scenarios actually takes place. We present and explain
these results in section 3.

When there are three investor populations, one might expect to find
rotation in market dominance between the three groups, as a natural exten-
sion of the two-population dynamics. This is generally not the case. When
there are three investor subgroups the time series can no longer be devided
into distinct eras where one of the populations dominates. Instead, all pop-
ulations are acting simultaneously, with strong nonlinear coupling between
them. The market behaviour becomes very complex, and more realistic. In
section 4 we discuss the dynamics of a market with three and more investor
subgroups.

We present our conclusions in section 5.

1. The Model

The microscopic ‘element’ of our model is the individual investor. In-
dividual investors interact via the buying and selling of stocks and bonds.
The model presented here is the most basic model attainable in which all the
crucial elements of the stock market are included. We have consciously made
certain simplifying assumptions and omitted some of the features of the real
market. We explain our notations as we go along, but also give an organized
list of notations for reference at the end of section 1.1.

Our stock market consists of two investment options: a stock (or index
of stocks) and a bond. The bond is assumed to be a riskless asset, and the
stock is a risky asset. The stock serves as a proxy for the market portfolio,
(e.g., the Standard & Poors index). The extension from one risky asset
to many risky assets is straightforward. However, one stock (the index)
is sufficient for our present analysis because we restrict ourselves to global
market phenomena and do not wish to deal with distributions across several
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risky assets. The investors are allowed to revise their portfolio at given time
points, i.e. we discuss a discrete time model. The bond is assumed to be a
riskless investment yielding a constant return at the end of each time period.
The bond is exogenous and investors can buy from it as much as they wish at
a given rate. We denote this riskless rate of return by r. Thus, an investment
of W dollars at time ¢t yields W (14 r) at time ¢+ 1. The return on the stock
is composed of two elements:

(i). Capital gain (loss): The price of the stock is determined collectively
by all investors by the law of supply and demand. If an investor holds a stock,
any rise (fall) in the price of the stock contributes to an increase (decrease)
in the investors’ wealth.

(ii). Dividends: The company earns income and distributes dividends.
We assume that the firm pays a dividend of Dy per share at time t. We will
elaborate on D; when we discuss the parameters of the model. Thus, the
overall rate of return on stock in period ¢, denoted by H,, is given by:

P =P+ Dy
Py

H, (1)
where P; is the stock price at time ¢. In order to decide on the optimal
diversification between the risky and the riskless asset, one should consider
the ex-ante returns. However, since in practice these returns are generally
not available, we assume that the ex-post distribution of returns is employed
as an estimate of the ex-ante distribution. In our model investors keep track
of the last k returns on the stock, which we call the stock’s history. We
assume that investors have a bounded recall in that they believe that each
of the last k history elements at time ¢t H;, j =1t,¢t—1,...,t — k4 1 has
an equal probability of 1/k to reoccur in the next time period (¢ 4+ 1). The
bounded recall framework has been employed in other game theory analyses
[16-18]. Thus, as in real life, investors are confronted with an investment
decision where the outcome is uncertain. According to the standart theory of
investment under uncertainty investors derive "well being” or "utility” from
their wealth. Each investor is characterized by a utility function, U(W),
reflecting his/her personal preference. In a situation with uncertainty the
objective of each investor is to maximize the expected value of his/her utility
[19]. In the present work we assume the same utility function for all investors,
and we take this function to be In W, which is very common in the economic
literiture [20-22]. Investors divide their money between the two investment
options in the optimal way which maximizes their expected utility. We will
elaborate on this point below.



1.1 The Dynamics

To illustrate the dynamics of our model consider the state of the market
at some arbitrary time . We denote the price of the stock at this time by
P;. The stock’s history at this time is a set of the last & returns on the stock,
H;, j=tt—-1,..,t—k+ 1. We denote the wealth of the :th investor at
time t by Wy(¢), and the number of shares held by this investor by Ny(7).
Now, let us see what happens at the next trade point, time ¢ + 1.

Income Gain

First, note that the investor accumulates wealth in the interval between
time ¢ and time ¢ 4+ 1. He/she receives N(7)D; in dividends and (Wy(i) —
N(¢)Py)r in interest. (Wy(i) — Ny(i)P; is the money held in bonds as W(1)
is the total wealth, and Ny(:)P; is the wealth held in stocks). Thus, before

the trade at time ¢ + 1, the wealth of investor ¢ is:

Wi(i) + Ni(i)Dy + (Wi(i) — Ny(i)P,)r. (2)

During the interval between time ¢ and time ¢ + 1 there is no trade, therefore
the share price does not change and there is no capital gain or loss. However,
at the next trade, at time ¢ + 1, capital gain or loss can occur, as explained
below.

The Demand Function for Stocks

We derive the aggregate demand function for various hypothetical prices
Py, and based on it we find Py = P41, the equilibrium price at time ¢ + 1.
Suppose that at the trade at time t + 1, the price of the stock is set at a
hypothetical price P,. How many shares will investor : want to hold at this
price? First, let us observe that immediately after the trade the wealth of
investor ¢ will change by the amount N(¢)(P, — P;) due to capital gain (or
loss). Note that there is capital gain or loss only on the N(i) shares held
before the trade, and not on shares bought or sold at the time ¢ + 1 trade.
Thus, if the hypothetical price is Pj, the hypothetical wealth of investor 2
after the t + 1 trade, Wj,(7), will be:

Whi(i) = Wi(i) + Ne(0)Dy + (Wi(2) — Ne(e)Pe)r + Ne(0)(P, — P)  (3)

where the first three terms are from eq. (2). The investor has to decide
at time t + 1 how to invest this wealth. He/she will attempt to maximize
his/her expected utility at the next period, time ¢ + 2. As explained before,
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the ex-post distribution of returns is employed as an estimate for the ex-ante
distribution. If investor i invests at time ¢ + 1 a proportion X (7) of his/her
wealth in the stock, his/her expected utility at time ¢ 4+ 2 will be given by:

t—k+1

EU<X(@')> =1/k Y In

(1= X(0)Wa()(1 + ) + X (W) (1 + Hf>]

where the first term in the square brackets is the bond’s contribution to
his/her wealth and the second term is the stock’s contribution. The investor
will choose the investment proportion, X (7), that maximizes his/her expected
utility '. We denote this optimal proportion (which we find numerically) by
Xn(2).

The amount of wealth that investor ¢ will hold in stocks at the hypo-
thetical price Pj, is given by X (¢)Wy(¢). Therefore, the number of shares
that investor ¢ will want to hold at the hypothetical price P will be:

. Xn(0)Wh(e
N, Py = T, (4)
h
This constitutes the personal demand curve of investor :. Summing the
personal demand functions of all investors, we obtain the following collective

demand function:
Nu(Pr) = Nuli, Pr) (5)

Market Clearance

As the number of shares in the market, denoted by N, is assumed to be
fixed, the collective demand function determines the equilibrium price P.
Py is given by the intersection point of the aggregate demand function and
the supply function, which is a vertical line. Thus, the equilibrium price of
the stock at time ¢ 4 1, denoted by Py, will be P} .

As now borrowing or shortselling is allowed, we have 0 S X S 1. However, we introduce
a constraint asserting that X < b < 1 where b is very close to 1, (e.g., 0.99). Thus, the
assumption is that even if the pure mathematical solution advocates 100% investment in stocks,
to guarantee some money for emergency needs, investors will not invest more than b in the
stock, and they will keep some money in (riskless) bonds. If we introduce borrowing, we will

still have an upper bound on X, set by the bank. In this case we would have b > 1.
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History Update

The new stock price, Py and dividend D41, give us a new return on
the stock, Hyyq:

Py — P+ Dy
Py '

Ht—I—l =

We update the stock’s history by including this most recent return, and
eliminating the oldest return H,;_j;4; from the history. This completes one
time cycle. By repeating this cycle, we simulate the evolution of the stock
market through time.

Notations

r - riskless interest rate

P, - price of stock at time ¢

D, - dividend at time ¢

H; - rate of return of the stock at time ¢

k - memory span

Wi(2) - wealth of investor ¢ at time ¢

Ny(i) - number of shares held by investor ¢ at time ¢

X(¢) - optimal proportion of investment for investor ¢

Py, - hypothetical price

Whi(i) - wealth of investor ¢ given the hypothetical price P,
Ni(7) - demand for stocks of investor ¢ given the hypothetical price Py

1.2 Deviations From Rationality

The model described so far is deterministic. The decision making process
is conducted by maximizing expected utility. It is a bounded rational, pre-
dictable decision making. In more realistic situations, investors are influenced
by many factors other than rational utility maximization [23]. The net effect
of a large number of uncorrelated random influences is a normally distributed
random influence or "noise”. Hence, we take into account all the unknown
factors influencing decision making by adding a normal random variable to
the optimal investment proportion. To be more specific, we replace X(7)
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with X™*(7) where
X*(1) = X(7) 4 €(7) (6)

and €(7) is drawn at random from a normal distribution with standard de-
viation 0. We should emphasize that X (7) is the same for all investors, but
X*(2) is not, because €(¢) is drawn separately for each investor.

1.3 The Parameters

In the simulations described in this paper, we choose the time period
between each trade to be one day. Accordingly, we choose the rest of the
parameters realistically. We take the daily interest rate to be 0.01% (yeild-
ing a 3.7% annual interest rate). The initial history, consists of a discrete
distribution of returns with a mean of 0.0100025% and a standard deviation
of 0.0125%. With these parameters, the investment proportion in the risky
asset in the first round is about 50%, thus the bond and stock are more or
less compatible in the initial stage. The number of investors is 100 and the
number of outstanding shares is 10,000. The initial wealth of each investor
is $1,000. The initial share price is $4.00. The initial dividend is taken to be
$0.004 . We increase the dividend by 0.015% daily, to represent firm growth.
This growth rate yields an annual growth rate of 5.6%, which is close to the
long run average dividend growth rate of the S&P. We should stress that
our results are general and that there was no fine-tuning of the parameters.
The main features of the long run dynamics are insensitive to the initial
conditions.

2. Homogeneous Investors

The investors of our model are characterized by their utility functions
and their memory spans. In all of the simulations presented in this paper, we
assume a logarithmic utility function for all investors, so investors may differ
only with regard to their memory spans (and their investor-specific noise).
The first case we study is that of homogeneous investors. Figure 1 depicts
the price of the stock as a function of time, in a market of investors all having
a memory of the last 10 returns on the stock (k=10).

The stock price alternates regularly between two very different price
levels. The explanation for this dynamics is as follows :

The rate of return on the stock from the first trade is higher than the
oldest remembered return that is deleted from the history. This creates a
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distribution of returns that is "better” than the initial history, where "better”
means that investors are willing to increase their investment proportion in
the stock. When investors increase their investment in the stock the stock
price goes up, generating an even higher return. This positive feedback stops
only when investors reach the maximum investment proportion (99%), and
can no longer increase their investment proportion in the stock. This happens
at point b (Figure 1).

Once the price reaches the high level, the returns on the stock are not
very high, because the dividend is now very small compared with the high
price. In [15] it was shown that in the abscence of noise the returns on the
stock at this plateau converge to the constant growth rate of the dividend,
which is just slightly higher than the riskless interest rate. In other words, in
the absence of noise the price remains almost constant, growing only because
of the interest payed on the bond (more money entering the system and
being invested in the stock). When there is some noise in the system the
price fluctuates a little around the high level, because of fluctuations in the
investment proportions. These fluctuations generate some negative returns
(on a downward fluctuation) and some high returns (when the price goes

back up).

60.0

40.0 - :
&
(]
2
s

20.0 -

0.0 1 I 1 1 1 1 1 1 1
0 10 20 30 40 650 60 70 80 90 100
time (days)
Fig. 1. — Stock price as a function of time in a market of homoge-

neous investors with a memory span of 10 days.

One might suspect that a large downward fluctuation might trigger a
reverse positive feedback effect, where investment proportions will decrease,
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the price will drop, generating further negative retuns and so on - a crash.
This can happen, but only after the sharp price boom (a-b), which generates
an extremely high return, is forgotten. And, indeed, this is exactly what
happens at point c¢. Since it takes 10 days to forget the boom, the high price
plateus are a bit longer than the memory span (10 days to forget the boom
+ a few more days untill a large enough negative fluctuation occurs).

The crash (c-d) generates a disastarous return and, untill it is forgotten,
investment proportions and hence the price remain very low. When the
price is low, the dividend becomes significant and the returns on the stock
are relatively high. Once the crash has been forgotten (e), all the returns
that are remembered are high, and the price jumps back up. Thus, the low
price plateaus are 10 days long. This completes one cycle, which is repeated
throughout the run.

Figure 2 shows the Fourier transform of this run. As expected the main
peak is at a frequency fy bit lower than 0.05 (0.0415), corrosponding to a cycle
length a bit higher that 20 days (24.1 days). The other peaks : 3fy,5f0, ...
are due to the fact that the signal resembels a square wave, rathar than a
sinusuidal wave.

12 - B
L=24.1

10 - B

magnitude

04 :

02 | L=8.0
L=4.8
L=3.3

0.0
0.00 005 010 015 020 025 030 035 0.40
f

Fig. 2. — Fourier transform of the price in a market of homoge-
neous investors with a memory span of 10 days.
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The dynamics of a market with homogeneous investors is obviously very
unrealistic. The booms and crashes are not only gigantic but also periodic
and therefore easaly predictable. For a more detailed account of the homo-
geneous population dynamics see [13-15]. In the next section we study the
dynamics of a market with two different investor populations.

3. Two Investor Populations

Most models of the stock market assume that the entire investor popu-
lation can be represented by a single "average” investor. This assumption,
which is analougous to the mean field approximation, is made for the sake
of simplifying analytical treatment. In this section we show that by making
this approximation one loses the essence of the dynamics. As will be shown
below, it is precisely the nonlinear interaction between different investor pop-
ulations that makes the dynamics interesting and complex. In this section we
study the most simple nontrivial case, the case of two investor populations.
This is still a very simplified case, but it gives the flavour of the dynamics of
more realistic and complicated systems.

It turns out that the nature of the dynamics of a two-population market
is determined by the ratio of the memory spans of the two populations. In
order to understand this, consider the case where one population dominates
the market and dictates the dynamics. Let us ask ourselves what will happen
to a second population in such a market. First of all note that the dominant
population (which we denote by populationg, having a memory span my)
is not doing well on average. Since it is this population that dictates the
dynamics, by definition, this population "goes with the trend” (which it
creates). A boom occurs when populationg buys, so populationy buys at the
high price and therefore gains nothing from a boom (profit is made only on
stocks held before the boom). A crash occurs when populationg sells, and
therefore populationg sells at the low price and loses at the crash. Consider
the following arguments :

A. If the second population (population;) has a memory span in the
range mo < my < 2myg it will do even worse than populationg. The reason
for this is that population; will also buy at the high price and sell at the low
price (see Figure 3). Population; will do even worse than populationg, be-
cause before the boom it will hold less stocks than populationy, because
it will remember not only the crash, but some of the preceding low re-
turns, whereas populationy will remeber only the crash and the following
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high returns. By a symmetric argument population; holds more stocks than
populationy before a crash.

mg Mo

Fig. 3. — Investors with a memory span in the range mgy < m; <
2my are doing worse than the dominating population (memory span
mo).

B. If the memory span of population; is in the range 2my < m; < 3myg
population; will be better of than populationg. The investors of population;
always remeber one boom and one crash. These are by far the most dominant
returns in the memory and will therefore dictate a more or less constant
investment proportion, which is better than what populationg is doing. For
2nmgy < my < (2n 4+ 1)my , a similar argument holds. The bigger n, the
more stable the investment proportions of population;.

C. Investors with a memory span in the range 3my < my < 4my will
always have in memory three dramatic events ( either two booms and a crash
or a boom and two crashes). They will buy at the high price and sell at the
low price, but they will do so more moderately than populationg. Two booms
and one crash in memory generate a lower investment proportion than just
one boom. As a result this population will do a bit better than populationg,
but not as good as the population holding a more or less constant investment
proportion (2nmg < my < (2n 4 1)myg). The same argument holds for the
general case of investors with memory spans in the ranges (2n + 1)mgy <
my < 2nmg, n > 1.
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D. Finally, the investors that will be best off in this situation are those
with a memory span shorter than mgy. They will buy before the boom,
holding many stocks before the price increase and therefore making a big
profit at the boom, and they will sell before the crash, surviving it without
any loss.

To summarize, in a sitution with cycles of length 2my :

A :my < my < 2myg, my is performing very poorly

B :2nmy < my < (2n +1)mg, my is doing relatively well
C:(2n+1)mg < myi <2nmg, n > 1, better than A but worse than B
D

my < mg, mq is doing extremely well

The arguments above assume a situation where one population dictates
the dynamics and the second population is affected by the dynamics, but
does not affect it. This is of course unrealistic, but the above arguments are
very helpfull in understanding the more complicated actuall dynamics.

The first two-population case we studied is a market with half of the
investors having memory span 10, and the other half with memory span 14.
Figure 4 shows the fraction of the wealth of the population with memory 10
out of the total wealth. It is clear that this population quickly takes over
the market completely. Figure 5 is the Fourier transform of this run. This
Figure is very similar to Figure 2 - the investors with memory 14 do not affect
the dynamics at all. Why does memory 10 have such clear dominance over
memory 14 7 We know from argument A that when memory 10 dominates,
memory 14 is worse off than memory 10. This is also true when memory 14
dominates (argument D). Therefore memory 14 does not have a chance to
win - and is completely wiped out by memory 10.
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fraction of total wealth (memory span 10)
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Fig. 4. — Fraction of the wealth of the population with memory
10 out of the total wealth.

magnitude

T T T L T T T
12 1
3241

1.0 1

0.8 - :

0.6 - :

0.4 - :

02t L=8.0 |
L=4.8 L=3.3

0.0 " " M . . — -

0.00 005 020 0.15 0.20 0.25 030 0.35 0.40
f
Fig. 5. — Fourier transform of the price in a market with two equal

investor populations, memory spans 10 and 14 days
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The second case we studied is, again of two equal populations, one with
memory 10, and the other with memory 26. In this case memory 26 is better
of when memory 10 dominates (argument B) but memory 10 is better of
when memory 26 dominates (argument D). It is therefore reasonable that
one population can not dominate the other indefinately. Indeed, a look at
the fraction of the wealth of the population with memory 10 out of the total
wealth reveals alternating eras of dominance (Figure 6). It is interesting
that memory 26 dominates most of the time. It is even more interesting that
during a large portion of this time the cycles are short, and do not correspond
to the cycle length of a bit more than 52 that we would expect of memory
26 dominance. We see that memory 26 begins to dominate the wealth very
early in the run, whereas longer cycles corresponding to a memory of 26
begin only around day 2000 (Figure 7). How is it possible that memory
26 dominates, yet the cycles remain short ? This can be to understood by
looking at Figure 8. Figure 8 depicts schematically the following exaggerated
situation : memory mg dominates for a while untill at time ¢y memory m
becomes completely dominant and dictates the dynamics. The first boom
occurs only at t; when investors forget the crash at t; — my. The following
crash occurs at t; when investors forget the boom at t3 — my, and so on.
The resulting dynamics is that of nonidentical short cycles with an average
length of 2m; /3, and resembles very much the short cycles of Figure 7 (one
long plateau, followed by two short plateaus). This state of long memory
dominance and short cycles (2my/3) is quite stable and generic and will be
encountered again below.

1.00 - | | | | | | | | ]
0.90 I |
0.80 I |
0.70 I |
0.60 |
0.50 |

0.40 :

0.30 :

0.20 8
0.00 : : : : : : : :

0 10000 20000 30000
time (days)

fraction of total wealth (memory span 10)

Fig. 6. — Fraction of the wealth of the memory 10 population.
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Fig. 7. — Stock price as a function of time in a market with two
equal investor populations, memory spans 10 and 26 days .
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Fig. 8. — Meta-stable state where long memory dominates the
wealth yet the cycles are short.memory my dominates untill time ¢,
when memory m; becomes completely dominant and dictates the
dynamics. The first boom occurs at t; when investors forget the
crash at t; — my. The following crash occurs at t; when investors
forget the boom at t; — my.
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Who 1s better off in this meta-stable state 7 my is the trend maker and
can not be doing very well. On the other hand m goes with the trend 4 out
of 6 times, and does so more extremely than m;, which avarages more and
therefore maintains a more stable investment proportion (argument C) . It
turns out, that at least in this case, memory 26 is better off in this situation

(see Figure 6, day 0-2000).

Only when the system gets out of this meta-stable state and enters a
phase of long cycles (around day 2000) the shorter memory population begins
to gain dominance. Finally, at around day 5300 it gains enough power to
dictate the dynamics again (Figure 9). When the cycles are short the memory
10 population quickly loses its dominance (as there is no opposite metastable
state with short memory dominance and long cycles). This explains why
memory 26 dominates the wealth most of the time, and also the asymmetrical
form of the peaks in Figure 6.

400.0

360.0 - :
320.0 B
280.0 # :
240.0 H :

200.0 H :

price ($)

160.0 - i

120.0 J

80.0 ~ H

40.0 H LM W

0.0 1 1 1
5000 5200 5400 5600 5800

time (days)

Fig. 9. — Stock price as a function of time in a market with two
equal investor populations, memory spans 10 and 26 days .
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In the Fourier transform of this run (Figure 10) we see the long cycles
corresponding to memory 26. We also see that the short cycles are of length
18.6 days ( 55.6/3 ) rather than 24.1 days corresponding to memory 10 (see
Figures 2). This in agreement with our analysis of the meta stable state. 2
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L=18.6
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Fig. 10. — Fourier transform of the price in a market with two
equal investor populations, memory spans 10 and 26 days .

The last two-population market that we study is that of equal popula-
tions with memory spans 10 and 36. Similarly to the 10,26 memory market,
the investors with memory 36 are doing better than those with memory 10
when memory 10 dictates the dynamics (argument C), but those with mem-
ory 10 are doing better when memory 36 dictates the dynamics (argument
D). Hence, we may speculate that again we will find alternating eras of dom-
inance. Figures 11 and 12 show that this is not the case. We see in the
Fourier transform that only short cycles are present. Did the memory 10
population take over the market 7 Figure 12 tells us that this is not the
case. In fact, the memory 36 population dominates about 70-80% of the
total wealth throughout the run. This means that again we are seeing a situ-
ation where the long memory population dominates wealth but the cycles are

One might suspect that the peak at 18.6 is just the third harmonic of the long cycle,
however, the ratio between the third and first harmonics when there are only long cycles present
is approximately 0.17 (see Figure 2), whereas here this ratio is approximately 0.58. Also, we see

the short cycles directly in Figures 7, 9.
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short. The explanation here is very similar to that explaining Figure 8, and
again the short cycles are approximately 2my /3. The difference between this
case and the 10,26 memory market is that here the market remains stuck in
the metastable state. The memory 36 population never gains enough wealth
to dictate long cycles. The reason for this is clear, if we remember that m;
in the range (2n + 1)my < my < 2nmy is doing not as good against mg as
does my in the range 2nmy < my < (2n + 1)myg, (argument C). Thus, the
system remains in this state of "symbiosis” throughout the run.

18 - :
L=25.3

16 - :
14 - 1
12 :

10 - B

magnitude

0.8 :
0.6 i

04 :
L=8.4

0.0 ‘
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
f

Fig. 11. — Fourier transform of the price in a market with two
equal investor populations, memory spans 10 and 36 days .

We have seen very different things that can happen in two population dy-
namics, depending on the two memory spans. The phenomena of dominance
by one population, alternating dominance and symbiosis can be understood
in terms of the arguments A-D. Although the dynamics is rich, except for
short transitional periods between eras the cycles we obsereve are allways
orderly. The time series can be devided into distinct eras where there is a
definite cycle length. Within these eras prediction is possible, and therefore
the market is unrealistic. In the next section we will see what happens when
a third population is introduced into the market.
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Fig. 12. — Fraction of the wealth of the memory 10 population
in a market with two equal investor populations, memory spans 10

and 36 days.

4. Three Investor Populations

One might suspect that the three population dynamics is a natural ex-
tention of the two population dynamics. Instead of alternating between two
cycle lengths the system may just alternate between the three possible states
of dominance . Figure 13 shows that this is not at all the case. This Figure
depicts a typical part of the dynamics of a three population market, with
memory spans 10,141,256. With the introduction of a third population the
system has undergone a qualitative change. There is no specific cycle length
describing the time series. Instead, we see a mixture of different time scales
- the system has become complex. Prediction becomes very difficult, and
in this sense the market is much more realistic. Figure 14 shows the power
struggle between the three populations. Figure 15 depicts the Fourier trans-
form of this run. Although the dynamics is complex, it is clear from Figures
14 and 15 that there is an underlying structure, which perhaps may be ana-
lyzed by arguments A-D and their generalizations. The dynamics generated
by only three investor populations can be extremely complex, even without
any external random influences.
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Fig. 13. — Stock price as a function of time in a market with three

equal investor populations, memory spans 10,141 and 256 days .
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Fig. 14. — Fraction of total wealth as a function of time in a market

with three equal investor populations, memory spans 10,141 and 256
days .
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Fig. 15. —Fourier transform of the price in a market with three
equal investor populations, memory spans 10,141 and 256 days.

As the number of populations grows, the dynamics becomes more com-
plex and realistic. Figure 16 shows the dynamics of a market with six equal
populations with memory spans 10, 36, 141, 193, 256, and 420. One of the
effects of introducing more populations is that the amplitude of the fluctua-
tions decreases, and they become more realistic.
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Fig. 16. — Stock price as a function of time in a market with six

equal investor populations, memory spans 10, 36,141,193,256 and
420 days .

5. Summary

In this paper we studied a microscopic model of the stock market using
simulations. We analyzed the dynamics of this system with one, two, and
three investor subgroups, differing only in their memory spans.

When there is only one subgroup the dynamics is ordered and unreal-
istic. When there are two subgroups we observed phenomena ranging from
complete dominance of one population to alternating eras of domination and
to 7symbiosis”. In all these cases, however, the dynamics is ordered, in the
sense that the run can always be devided into distinct eras with a dominant
cycle.

This is qualitatively and dramatically changed when a third subgroup is
introduced. The dynamics of the system becomes complex. The larger the
number of investor subgroups, the more realistic and complex the dynamics.

Our results suggest that complexity is an intrinsic property of the stock
market. The dynamic and complex behaviour of the market need not be
explained as an affect of external random information. It is a natural property
of the market, emerging from the strong nonlinear interaction between the
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different investor subgroups of the market. As such, this complexity can be
investigated, rather than being regarded as random noise.
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