ASTA
a Test Bench and Development Tool
for Trading Algorithms

Thomas Hellstrom
Center of Mathematical Modeling (CMM)
Department of Mathematics and Physics
Mailardalen University
S-721 23 Visteras, Sweden
Technical Report Series IMa-TOM-1998-xx

August 27, 1998

Abstract

This report describes an implementation of ASTA, an Artificial Stock Trading
Agent in the Matlab programming environment. The primary purpose of the project
is to supply a stable and realistic test bench for development of multiple-stock trading
algorithms. The behavior of the agent is controlled by a high level macro language,
which is easily extendable with user defined functions. The buy and sell rules can
be composed interactively and various types of data screening can be easily per-
formed, all within the Matlab syntax. Various forms of performance evaluation and
benchmarks are discussed.

Apart from being a test bench for trading algorithms, the system may be also
run in batch mode where a supplied objective function maps a trading strategy to a
profit measure. This can be used to tune parameters or to automate the development
of trading strategies, for example with genetic methods. Some examples of tuning
parameters in standard statistical indicators are presented.

To improve the performance of a given algorithm, the data from the simulated
trades can be post processed by classification methods such as artificial neural net-
works or fuzzy rule bases.

The ASTA system has been applied successfully to historical stock data, and
results covering 11 years of the Swedish stock market are presented.

Keywords: trading, artificial trader, technical analysis, data mining, prediction, stock
returns.

! Also Department of Computing Science at Umea University, Sweden. thomash@cs.umu.se

1 Introduction

The idea of expressing stock prediction algorithms in the form of trading rules has gained
considerable attention in academic research in the last years. The international conference
NNCM-96 devotes a whole section in the proceedings to ”Decision Technologies”. Bengio
[2] writes about the importance to train artificial neural networks with a financial criterion
rather than a prediction criterion. Moody and Wu [8] use reinforcement learning to train a
trading system with objective functions such as profit, economic utility and Sharpe ratio.
Atiya [1] describes a trading system based on time-variable stop-losses and profit objectives.

This report describes an implementation of ASTA, an Artificial Stock Trading Agent.
Trading rule-based prediction algorithms may be easily evaluated here using historical
data. ASTA also works as a development tool where trading rules can be combined and
evaluated within the system.

The program has been developed in the Matlab programming language and can be used
either as an ordinary objective function called from a user’s program, or as an interactive
tool for benchmarking and development of trading algorithms.

1.1 Objectives

The reasons for developing an artificial trader were:

1. A test bench for trading algorithms.

Many ”technical indicators” for stock prediction are accepted and widely used with-
out having ever been subjected to an objective analysis with historical stock data.
It is true that many commercial software packages for technical analysis offer both
a comprehensive programming language and a simulation mode where the perfor-
mance can be computed. However, most available products don’t take this task very
seriously and real trading simulation with a multiple stock portfolio is seldom pos-
sible. Furthermore, often the performance measures are not sufficient for a serious
evaluation of an algorithm behavior over a longer period of time. Therefore, there
is a need for an objective and scientific test bench for the methods and algorithms
already developed and in common use.

The need for proper evaluation of new trading algorithms is of course the same as
for existing ones. ASTA is developed in Matlab 5 and is therefore mainly suitable
for tests of algorithms developed in the same language.

2. An interactive development tool for trading rules.

There are reason to believe that a successful trading system consists of many disjunct
parts where a buy signal can be, for example, "screened” by looking at the traded
volume. A buy signal issued with a low-traded volume may then be rejected. Other
composite rules include looking at the general trend of the stock before accepting a
signal from the system. ASTA provides the possibility to test such composite rules
easily. The included function library and the possibility to define a trading strat-
egy interactively makes implementation and evaluation of many trading strategies
possible ”without programming”.

3. An non interactive development tool for trading rules.

Furthermore, it is possible and possibly fruitful to automate the development of trad-
ing rules. Since ASTA defines the trading strategy as symbolic Buy rules and Sell
rules given as arguments to the system, it would be perfectly possible to construct
buy and sell rules, for example in a genetic framework.

Even if the general look of the algorithm is fixed, there are often a lot of tunable
parameters that affect the trading performance. Examples are filter coefficients,
order of polynomials and levels above or below which an entity should pass in order to
generate a trading signal. Since we believe that the actual behavior during a realistic
trading situation is essential for proper selection and optimization of an algorithm,
there is a need for an objective function that can be included in an optimization
phase for parameter tuning.

4. Data generation for post processing

The comprehensive and user-friendly macro language in ASTA makes it a very suit-
able tool for extracting data for further analysis, such as classification with neural
networks or fuzzy rule bases. A raw selection of trading situations is first set up with
simple trading rules. Data (”features) for these situations are then automatically
written to a file. A ”target” value for each trade is also supplied. Thereafter it will
be a classification task to find out how to distinguish between a profitable trade and
a non-profitable one, based on the given features.

2 Basic approaches to Stock predictions

Prediction algorithms for stock prices can be categorized in a number of ways. One cate-
gorization focuses on the way the points to predict are selected. Two broad classes can be
identified; ”The Time Series Approach” and ”The Trading Rule Approach”

2.1 The Time Series Approach

The traditional way to define a stock prediction problem is to view the stock returns as a
time series y(¢). One-day stock returns are often defined as

y(t) = C’lose(Ct;O;e(C’tlisigt - 1) (1)

To predict future return values, y(¢t + h) is assumed to be a function g of the previous
values. l.e.:

y(t+h) = g(y(@), y(t =1), ..., y(t — k)). (2)

The task for the learning or modeling process is to find the function g that best approxi-
mates a given set of measured data.

The bias for the unknown function g can be chosen in many ways. Common choices are:

e A linear AR model: .
g(t) =) amy(t — k) +a_y (3)

m=0

e A general nonlinear model implemented by a multi-layer-feed-forward neural network.
A 1-hidden-layer net defines g as

o) =3 (11 (35 st = 1)1,)) 0

i=0

1

where h is a nonlinear function such as the sigmoid function h(z) = ;7=

The unknown parameters (a,, for the AR model and w;, w,, ; for the neural network) are
normally computed by the learning algorithm so that the root mean square prediction error

1 N

RMSE = \IN > (g(t) —y(t+ h))? ()

t=1
is minimized.
It is most common to let the minimized RMSE measure (5) be the end point in the

prediction task. However, in order to utilize the predictions, a decision-taking rule has to
be created. It’s common to formulate a simple rule like the following:

Buy :if ¢g(t) > «
D(t) =14 Sell:if g(t) < —p (6)
Do nothing : otherwise

where o and (3 are threshold parameters for buy and sell actions depending on the predicted
change in the stock price.

The time series formulation based on the minimized RMSE measure (5) is not always ideal
for useful predictions of financial time series for the following reasons:

1. The fixed prediction horizon h does not reflect the way in which financial predictions
are being used. A model’s ability to predict should not be evaluated at one single
fixed point in the future. A big increase in a stock value 14 days into the future is as
good as the same increase 15 days into the future!

2. The characteristics of the underlying processes that generate the time series are
dramatically different in different parts in the series. Therefore, it is not a very good
idea to attempt to fit a global model, however ingenious, which is fit for the entire
time span. On the other hand, using a sliding window and computing models such
as ARMA within the window is too local and does not make use of any knowledge
from data outside the fixed window.

3. The RMSE measure (5) treats all predictions, small and large, as equal. This is not
always appropriate. Predictions that would never be used for actual trading (i.e.
price changes too small to be interesting) may cause higher residuals at the actual
points of interest, in order to minimize the global RMSE.

4. A small predicted change in price, followed by a large real change in the same di-
rection, will be penalized by the RMSE measure. This does not agree with the way
we judge the quality of a stock prediction in actual trading, since the profit made by
trading according to the prediction will just be higher if the actual change in price
becomes larger than predicted.

5. Several papers report a poor correlation between the RMSE measure and the profit
made by applying a prediction algorithm (e.g. Leitch & Tanner [5] and Bengio [2]). It
has also been proven [7] that a strategy that separates the modeling from the decision-
taking rule, such as the one in 6, is less optimal than modelling the decision-taking
directly. Argument 3 and 4 both give explanations to these results.

2.2 The Trading Rule Approach

Instead of separating the prediction task and the decision task as was done in the ”Time
Series Approach”, algorithms can be constructed to recognize situations where one should
buy and sell stocks respectively. The task can be defined as a classification problem with
three classes: ”"Buy”, ”Sell” and ”Do nothing”. Since we want classifications for all points
1to N, we still need to express the predictions as time series. A trading rule can be
described as a time series T'(t) defined as

attempting to model the time series and predict stock returns for all points 1to N

Buy : if g(X(t)) >0
T(t) =< Sell:if g(X(t)) <0 . (7)
Do nothing : otherwise

The unspecified function g determines the type of the trading rule.
The argument X(t) has the following form:

X(t) = (Ba(t), .., Rn(t)) (8)

where each Ry (t) is an observable feature at time ¢. In the case of stock predictions it may
be for example the k-day returns defined as

Close(t) — Close(t — k)

Ry(t) = 100 Close(t — k) ©)

or standard technical indicators such as RSI, MACD etc.

This formulation covers the so-called ”technical indicators”, which are very common in real
trading. Even if they are seldom generated in this formal way, they can often be formulated
as a trading rule T'(¢) as described above. One example is a moving average trading rule,
that can be built from two moving average functions operating on the stock prices. Buy
and sell signals are generated when two moving averages of different orders intersect.

The task for the learning process in The Trading Rule Approach is to find the function g
so the profit is "maximized” when applying the rule on real data. Various ways to measure

the profit is discussed in section 3. Note the difference between this and The Time Series
Approach, where the learning task was to find a function g so the RMSE error (5) was
minimized over the entire time series.

The Trading Rule Approach avoids many of the problems previously described with the
Time Series Approach but does indeed have problems of its own:

1. Statistical significance. The trading rule T'(¢) normally gives Buy or Sell signal
only for a minor part of the points in the time series. While being one of the big
advantages, it also presents serious statistical problems when computing levels of
significance for the produced performance. It’s no problem to find a rule 7(¢) that
historically outperforms any stock index as long as it doesn’t have to produce more
than a few signals. It’s clear that a rule T'(¢) that produces many signals for a
given time interval, is more reliable than one that just produces a few, even if the
profit is the same. However, it’s not clear how this trade-off between profit and
number of signals should be settled in an optimal way. The selection bias when
choosing ”good” trading rules makes a complexity argument worthless since even a
very simple trading rule can produce very high profit if it just has to signal a few
times. The general problem remains unsolved in the present work, with the single
but important observation that the number of produced signals should be as high as
possible in order to render the trading rule credible.

2. Commonly used methods for modeling or inductive learning, such as Regression mod-
els and Artificial Neural Networks cannot be applied in a normal fashion since a set
of training data with Patterns and Targets are not available in the same way as in the
Time Series Approach. However, a related modeling problem can be formulated as
an extension to a system based on trading rules. The points where T'(¢) signal buy or
sell can be used to extract examples that can be input to a modeling or classification
routine. The trading rule 7" may be refined in this way to produce a higher hit rate
and most probably a higher overall profit. Therefore, a data extraction function has
been built into the ASTA system.

The ASTA system is constructed according to the ”"Trading Rule Approach”. In the next
section the evaluation of a prediction system based on these principles will be investigated.

3 What Is Good Performance

A way to measure the performance of an algorithm is needed in two phases of the trading
system’s development cycle. Firstly, during the modelling phase where optimal settings
on unknown parameters in the algorithm has to be decided. Secondly when the complete
algorithm is put to test on historical data to see if it serves the original purposes of the
development project. As was mentioned in section 2.1, there are good reasons to use the
same performance measure in these two phases. The final result may otherwise be sub
optimal.

Evaluation of prediction performance is an important, difficult, and often overlooked stage
in the development of prediction algorithms for financial data. In the case of an artifi-
cial trader based on the ”Trading Rule Approach” described in the previous section, one

problem is that the produced trades are comparatively few, which gives a somewhat weak
statistical basis for our performance measures. Apart from this we have the problem with
overtraining. By tuning the parameters in the artificial trader to maximize the performance
on historical data, we always run a risk of fitting the algorithm too closely to the data set.
Even if the trader’s behavior is a rather ”small” model (i.e. it has relatively few degrees
of freedom), the problem must not be overlooked. Illustrative examples can be found in
6].

A third problem is the fact that the process is non-stationary, i.e. the performance of
a trading behavior varies over time due to varying global conditions affecting the stock
market as a whole. One strategy may work fine in a trending market, while another works
best in a non-trending market.

Before starting to optimize the behavior or our artificial trader we must decide three things:

e What performance measure is relevant? Several options exist.
e What is the best way to measure the selected performance measure?

e With what do we compare our artificial trader’s performance when we say that it is
good? We need a good benchmark.

We start by investigating alternative performance measures:

3.1 Performance measures

3.1.1 Total Profit.

An intuitively appealing and very common measure is the total wealth achieved by the
trader when simulating trading over the available training data period. The wealth is
often presented as a function of time in a so called equity diagram. For comparison, a
global stock index is often presented in the same diagram. The curves are scaled so the
leftmost point has a wealth of 1 for both the trader and the index. The values for other
points along the date axis can be then interpreted as wealth relative to the one at the
starting point. A value 2.10 will mean, for example, that the initial capital has increased
to 210% of the start capital. Therefore, the final value on the very right of the diagram
will be the net result after completed trading for the entire time period. One example of
an equity curve can be seen on the top diagram in figure 1. The major drawback of this
method is that the trades in the beginning of the time period affect the end result more than
the trades in the end of the time period. This is a consequence of the cumulative nature
of the simulation. The profits in the beginning of the time period are being reinvested and
therefore will appear ”several times” in the total wealth resulting from trading during the
entire time period. This is a nice effect if you want to show off your trading and stun people
with an exponential increase in wealth. Its commonly used when the banks present results
for their mutual funds over the years. However, the index curve is often not included in
these cases since they would reveal that the mutual fund actually hasn’t performed any
better than the market in general. One has to realize that a constant economical growth
of say 5% over a period of 10 years gives rise to a seemingly impressive exponential wealth
curve for the average stock. With or without clever trading systems.

3.1.2 Average Profit Per Day

To get around the cumulative effect in the total-profit measure, one could compute the
average profit per day (percentage) and use that as a measure of the trading performance.
By this we lose the possibility to evaluate the trader’s behavior during the varying global
market conditions that arise during any longer simulation period.

3.1.3 Profit Per Year.

A compromise between using the total profit and the average profit per day would be
offered by computing the annual profit achieved by applying the trading algorithm. The
mean annual profit could be used as total measure for the entire time period. However,
it’s also very important to pay attention to the performance in each individual year.

3.1.4 Statistical Significance

As discussed in section 2.2, the profit from a Trading Rule based system has a very weak
statistical significance if the number of trades produced during the simulation is too low.
The number of trades are therefore of central importance and should be presented along
with the trading results.

3.2 What is the best way to measure the selected performance
measure”?

Its important to realize that the profit measure we select for optimization and evaluation
is a stochastic variable which has not got any single ”value” that can be measured. Instead
it has a probability distribution which can be described by its statistical moments such as
the expectation value and the variance. What we get when we compute e.g. the annual
profit for a year, is merely one sample from this distribution (assuming it is stationary over
the years). The task of "maximizing” the profit by changing the parameters in the model
now becomes less well defined. Obviously, the common way of using the mean value is just
one option. Other choices could be the lower limit of a confidence interval, the median
value or the Sharpe Ratio. The issue is further discussed in section 8 where the profit is
examined as a function of various parameters in the model.

3.3 Benchmarks

Apart from a performance measure, we also need something to which to compare the
performance. What’s good and bad performance depends on the alternatives. The obvious
benchmark is to use some kind of stock index, which is also the most common method used
by professional broker companies. A broker who outperforms the index gets bonuses and
the one who doesn’t might risk his job. Mutual funds in particular are governed by these
ways of thinking. Even if the individual traders wont lose their jobs, the managers know
that their funds will lose customers if they start doing worse than the global stock index.

This is one of the reasons that so many mutual funds acting on one particular market
perform almost identically.

For our purposes however, it’s a reasonable benchmark since it compares the performance
to a very available alternative: that of buying a mutual fund instead of doing the trading
ourselves.

The following two kinds of indexes have been tried:

e The Swedish index Generalindez.

e An artificial index with equal parts for all the stocks available for the artificial trader.

No significant differences affecting the performance evaluation have been found between
the two kinds of indexes and the official Generalindex has therefore been chosen the as
benchmark.

3.4 Conclusions Regarding Performance Evaluation

The artificial trader’s result is presented as annual profits together with the increase in
index. The mean difference between these two figures constitutes the net performance for
the trader. The performance is displayed in both tabular and graphical formats as shown in
the table part of 3 and figure 1. The second last line of the table presents the annual profit
above the index. The mean value of this entity is presented in the second rightmost column
and represents a one-figure performance measure. However, the individual figures for each
year should also be considered. The question whether the optimization and selection of
trading algorithms should be based on the mean value or, for example, on the worst value
for the investigated years, remains open.

4 Designing the Artificial Trader

The task of the Artificial Trader is to act on an artificial market with a large number of
available stocks that vary in prices over time. The Trader has to execute the trading rule
T'(t) at every time step and decide whether to buy or sell stocks. The sole aim of the
Trader is to produce as high a profit as possible. Various aspects of the calculation of the
performance were discussed in the previous section 3. The presentation and evaluation
of the trading results is a major part of the ASTA system. In this section the general
architecture of the developed system is described.

4.1 Basic Architecture

The architecture of ASTA is based on an object-oriented approach with two major objects;
the Market and the Trader. The two objects have a number of attributes and operations
that can be applied on the objects . The basic components and their relations are presented
in figure 2.

10

Equity curves for Trading (499%) and Index (138%)
8 I

—— Trading

6/ ——— Index J bt
‘ M/]
2 Pl eV

Jan90 Jan92 Jan94 Jan96 Jan98
Mean annual profits Trading:28% Index:14%
~ 100
=
2
& 50
=]
£
=y
g, o L sl
= 7_‘
c
8=
&
= -50

90 91 92 93 94 95 96 97

Figure 1: Presentation of performance for a (successful) trading strategy

4.1.1 The Market Object

The Market Object consists essentially of the total number of stocks that should participate
in the trading simulation. A stock is defined by four time series; Close, High, Low and
Volume. Each of these time series has a numeric value (or NaN in the case of not available
values) for each date in the time period of interest. The basic operation on the Market
Object is the simulation of changing prices as the date moves from start date to end date.
The attribute T is updated by the Step in time operation applied to the Market Object.

4.1.2 The Trader Object

The Trader Object is more complex than the Market Object, as far as both attributes and
allowed operations are concerned. The Portfolio attribute keeps track of the possession
of stocks during the simulation. The Cash attribute is initialized to a certain value and
thereafter is modified automatically as stocks are bought and sold. The Buy rule and Sell
rule are the main attributes that affect the behavior of the Trader. They are expressed in a
high-level language and may include calls to a large number of predefined Matlab functions
that access the stock data in the Market Object. User-defined functions can also be called
directly. The values of the Buy rule and Sell rule attributes can be set interactively to
enable fast experimentation when developing trading algorithms.

The basic operations on the Trader Object are Buy recommendations which evaluates
the Buy rule and Sell recommendations which evaluates the Sell rule. The opera-
tions compute vectors with buy and sell recommendations for all relevant stocks. These
recommendations are then carried out by the Buy and Sell operation. The behavior of

11

the Trader can also be modified by a number of Other parameters that affect parame-
ters such as minimum and maximum values for one individual trade.

Operations
eInitialize
Step in time

Market

Operations

eInitialize

*Buy recommendations
*Sell recommendations
*Buy

*Sell Trader

*Evaluate I

51 Sell rule : (Loss>10 | Profit>30)

50

254

90 91 92 93

=) Mean profit above index=11.3 %

Attributes
*Stock data
*Index
*Current time T

Attributes
*Portfolio

*Cash

*Wealth

*Buy rule

Sell rule

*Other parameters

100, Buy rule : (M=max(High,T-10:T-1); Close>M & Close(T-1)<M)

Figure 2: Basic components of the ASTA system

4.1.3 Other Parts of the System

The Market and Trader Objects have to be controlled by a support system that takes care

of the following "meta” operations:

e Simulation.

The Step in time operation has to be applied to the Market Object in a loop
for the selected time period. For each time step, the Trader Object should also be
activated. The following pseudo code describes the full ASTA system:

Trader.Initialize
Market.Initialize
loop until Market.T>EndDate
s = Trader.Sell Recommendations
Trader.Sell(s) % Sell all stocks of type s
s = Trader.Buy Recommendations
n = T.available cash / length(s)
Trader.Buy(s, n) % Buy n stocks of type s
Market.Step in time
end loop
Trader.Evalute

e User interface

12

The end user should be able to set parameters such as the Trader’s Buy rule and
Sell rule and the desired time period for simulation. The computed performance
of suggested trades etc., should be presented and also optionally printed out to the
user after the completed simulation. In the case of using the system as an objec-
tive function in an optimization task, there must also be a ”silent mode” included.
The Artificial Trader should then be called as an ordinary objective function in the
optimization program code.

4.2 Other Design Issues

We conclude the general description of the design with some specific issues that had to be
taken into account in the design of the Artificial Trader.

4.2.1 When Is Data Available?

In a real trading situation on day T, Close, High, and Low for day T are not available.
However, it’s common that prediction algorithms assume that this data is available and
can be included in the prediction of tomorrow’s prices. Furthermore, it’s often assumed
that the Buy and Sell recommendations from the trading system can be executed using the
close prices for day T. In reality this is of course hard to achieve, since the stock market is
closed by the time the data for the current day becomes available, not to mention it having
been transferred to a computerized trading system. ASTA can be configured to execute
the simulated trades using either of the Following prices for buy and sell:

e Today’s Close price
e Today’s Mean price
e Tomorrow’s Close price

e Tomorrow’s Mean price

The data for day T is assumed to be available for analysis on day T.

4.2.2 How Many Stocks to Buy

The trading rule T'(s) does not contain any guide as to how many stocks or how big a
portion of the cash should be invested in the particular stock that gets a buy signal. It’s
obvious that this affects the performance of a trading system and it’s also clear that a risk
estimate coupled with the trading signal could be of help. The present version of ASTA
does not offer any sophisticated procedures for selection of the number of stocks to buy.
The agent simply divides all available cash equally among the stocks that get a buy signal
(while observing the upper and lower limits for one individual trade). When a stock gets
a sell signal, the whole holding is sold.

13

4.2.3 Reinvesting Money

The Artificial Trader buys and sells stocks and hopefully increases the wealth during the
simulated time period. In such a way there will be a cumulative effect, since old profits
will be reinvested in future trades. It affects the performance evaluation as was discussed
in more detail in Section 3.

Preventing the Artificial Trader from reinvesting the profits made along the way would
remove the cumulative effect, but wouldn’t provide a realistic situation since the real value
of the working capital will be reduced due to inflation. The trader’s effective capital by
the end of a ten year period may be less than half, for example, of what it had been in the
beginning. Therefore, we find it better to let the trader reinvest all the money to let the
stock prices automatically compensate for the inflation.

4.2.4 Interest on Cash

The money not invested in stocks is assumed to yield interest in a bank account. The level
of interest varies over time and follows the Swedish three-month-bond interest rate.

4.2.5 Unused buy and sell signals

One problem with the basic approach of evaluation by simulated trading is that a large
portion of the buy signals will be neglected due to lack of money for the artificial trader.
Even sell signals will be neglected simply because the stock that issue the signal is not
in the traders portfolio. Tests show that more than 90% of the signals often are ignored
in this way. This seriously affects the statistical basis of a performance analysis for the
training algorithm. A possible way to attack the problem is a top level loop with multiple
runs and randomization of entities such as:

e The starting date for trading
e The acceptance of buy signals

e The set of available stocks for trading

The present version of ASTA does not include any of the suggested improvements. Since
the running time for one simulation of 10 years trading takes in the order of 30-60 seconds
on a 266 MHz PC, the problem needs proper consideration before any further development
along these lines are conducted.

5 Using ASTA

ASTA is available in two versions:

e As a Matlab function, fasta.m, that takes a Buy rule and Sell rule as in parameters
and returns the performance for a selected time period.

14

e As a windows application to be run under Matlab. The Buy rule and Sell rule
and all other settings are controlled interactively and the results are presented on the
screen.

5.1 fasta

The purpose of the ”batch” version of the program is to provide an objective function that
can be used for parameter tuning or automated generation of trading rules. This report
does not describe that part of the system more than by showing the following example of
how it can be used:

Example 1 :

/4 load the workspace with stock data:

fasta(’astaszg’)

/4 Simulate trading with specified Buy and Sell rules for 1990-1995.
% The performance ts returned in the p wvariable.

p = fasta(’Close(T)>Close(T-1)’, Profit>20 | Loss>10’, [90 95])

5.2 wasta

Asta can also be run as an interactive windows application in the Matlab system. In this
section examples from the interactive version are demonstrated.

To start ASTA, run the wasta.m function from the matlab environment. The following
screen should be displayed:

In this picture, the user can set up parameters for a simulated trading. The stocks of
interest are picked from a large database in Metastock format. Stocks from the Swedish
stock market have been used in the presented runs. 32 major stocks with active trading
for the years 1987-1997 have been selected. Other databases could easily be interfaced to
the system.

The most interesting items are the lines ”Buy rule” and ”Sell Rule”. This is the place where
the trading algorithm is decided. The rules follow Matlab syntax and can include any of the
large number of predefined functions or the users own functions with new algorithms. The
simulation of trading starts by clicking on the ”Run” button. The results are presented in
tabular form and in graphs such as figure ?7.

The command button ”Optimize” initiates a whole series of simulations with different
values on symbolic parameters in the Buy and Sell rules. The name of the parameters is
given in the ”Parameter” text box and the values to be included in the multiple simulations
are given in the ”Values” text box. The results are presented in four graphs which are also
written as eps files. Examples can be found in the section 8.

15

ASTA

From date To date Courtage (%) Min Courtage in buy (%) Wax buy (%) Initial Cash
per trade per trade
| 87 | 37 | 0.15 | an | 5 | z0 | tooooo
Buy rule [Close(T) > High|T-1]
Sell rule [Los=>10 | Profit:ao
Parameter Walues
Run | | Save graph Optimze | |
Market: 32 stocks. Dates: 820104-980409 (4071 days) Dump Trades Buy price: Sell price:
Load | astasxy ™ To window & Today's & Today's
Generate 3XG ™ Tafile © Tomorrow's € Tomorrow's
Save I I Diagram
Performance
Annual profits:
a7 15} a9 20 91 22 23 94 85 24 a7 Hean Total
Strategy profit : -5.9 z6.3 -9.5 -34.3 1.0 -5.7 33.6 13.3 39.8% 36.6 30.2 11.4 154.4
Index profit : -7.9 S§1.9 2z.9 -29.7 5.4 -0.0 52.1 4.8 18.3 38.2 23.8 16.3 310.3
Difference profit Zz.0 -25.6 -32.4 -4.9 -4.4 -5.7 -18.0a 2.3 21.5 -1.8 6.4 -4.3 -155.8
Nunber of trades : 51 43 50 85 65 2] az 43 37 50 53 62 &80

|Sw1tch to graph window for performance plots

Help End

Figure 3: Screen layout for the windows version of ASTA

6 Developing Trading Algorithms with ASTA

One of the key goals of using ASTA has been to provide a solid and easy-to-use basis
for development of trading algorithms. The ”Trading rule” approach has been taken as
described in Section 2.2. The algorithm should be formulated in a day-by-day structure,
where buy and sell recommendations are produced daily by the algorithm. The decisions
should be based on past stock data only. Fundamental data about the companies cannot
be used in the present version of the system. It should also be emphasized that the
"Trading rule” approach implies a decision-making system and not a modeling system.
However, implemented algorithms may use modeling ”internally” and base the buy and
sell recommendations upon it.

The following goals and guidelines have been kept in mind while designing the development
interface in ASTA:

e Fool proofness

An 7off-by-one-error” can seldom result in more drastic consequences than when
developing prediction algorithms. Looking into the future, which is normally pretty
hard to do, is in the case of prediction algorithms surprisingly easy to do, even
unintentionally. In the case of indexing time series vectors however, it should not

come as a surprise that finding an error in code segments, like the following one, is
indeed difficult.

t=k—h+1
x(m)=ylk+2*(—j)—1)..

16

Therefore, the access functions implemented in ASTA have been designed with a
check for arguments that peep into the future. The global variable T is automatically
updated by the simulation mechanism to point at the ”current day”. Attempts
to address the stock time series before this point will automatically issue an error
message. Example:

y = Close(T — 4 : T') assigns the close prices for the current day and the 4 previous
days to the variable y.

y = Close(T : T + 1) issues an error message when executed during the simulation.

The same check routine has been implemented in the higher level routines as well,
thereby issuing clearer error messages pointing to the first place, where an illegal
time reference is found.

e Fase of use

Existing ASTA functions can be used interactively to create Buy rules and Sell
rules. When the user has implemented a new trading algorithm the Matlab function
can also be used in the Buy rules and Sell rules. It can easily be tried out
interactively with different settings on parameters etc.

e High level functionality

Predefined ASTA functions can perform operations such as moving averages and de-
tection of crossings between time series. Other predefined functions compute derived
entities from the stock data time series; gaussian volume, volatility, trend and ranks.
These functions can be included in the user-defined algorithms and will simplify the
coding considerably.

ASTA is equipped with a large number of predefined functions to be used interactively in
Buy rules and Sell rules. They may also be used in user-defined functions. Before going
into details of the available functions, some basic concepts will be described.

6.1 Global Variables

The variables listed in table 1 are dynamically set by the system and should normally not
be changed by any user routines.

The variable T is central both when defining Buy rules and Sell rules and also when
writing new functions for prediction. The idea is that the user never should have to worry
about the time aspect, since it is automatically taken care of by the simulation framework.
By using T as index, the ”current” day will always be referenced. By using T-1, yesterday
will be referenced etc. Attempts to use T+1 will issue an error message, thus prohibiting
the program from peeping into the future.

It is seldom necessary to use the variable Stocks when writing user-defined functions.
However, it should be made clear that the variable is set to all stocks in the market when
the system looks for stocks to buy (i.e. when the Buy rule is evaluated) and to all stocks
in the Trader’s portfolio when the system tries to find stocks to sell (i.e. when the Sell
rule is evaluated). The function call Close(T) for example, returns a row vector with the

17

Name Type Size | Decription

T numeric | 1 Row pointer to "current” day

Column pointers to allowed stocks.

Stocks is set to all stocks in market
Stocks | numeric | 1z N | when evaluting a Buy rule

Stocks is set to all stocks in portfolio
when evaluating a Sell rule

Market | struct 1 The Market object

Trader | struct 1 The Trader object

ST struct 1 Parameters controlling the Trader’s behavior

Table 1: Global variables in ASTA

close values for all stocks in the Stocks variable for the day T (the ”current” day in the
simulation).

6.2 Time Series Matrices

Most time series data within the ASTA system are enclosed in objects denoted Time
Series Matrices and are abbreviated TSM in this documentation. They are ordinary
2-dimensional Matlab matrices where each row represents one date and each column rep-
resents one stock. The actual dates and actual stocks in a particular matrix vary, but the
last row most often corresponds to the ”current” day T. The columns normally correspond
to the stocks in global Stocks.

The available data is the stock time series enclosed in the Market Object; Close, High,
Low and Volume. These are the only features available when creating Buy rules and
Sell rules, and also when creating new prediction algorithms. Close, High, Low, and
Volume are also the names of the access functions used throughout the system.

Example 2 : The call Close(T-5:T) returns a 6 row matrix where each column is as-
signed the close value for a stock in the global Stocks variable. Row 1 corresponds to day
T-5, row 2 to day T-4, down to row 6, which corresponds to day T.

A whole range of functions that accept TSM:s as arguments and /or generate it as output are
included in the system. This design principle turns out to be convenient, since the matrix
operations within Matlab can be used and makes the code very readable and effective. The
Matlab function OHIGH in the following example detects Close values that cross a k day
maximum of High from below.

Example 3 :

function b = OHIGH (k)
C = Close(T);
Cml1 = Close(T-1);
M = maz(High(T-k:T-1)); / The call to High returns a k
/i rows long Time Series Matriz
b = C>M & Cmi<=M;
return

18

The function returns a binary row vector with a ”1” in those columns where the corre-
sponding stock fulfilled the condition. It is an example of the data type: Indicator Vector.

6.3 Indicator Vectors

An Indicator Vector is a single-row TSM. Sell and Buy rules should evaluate to binary
Indicator Vectors that are used directly as sell and buy recommendations. Other Indicator
Vectors such as the return value from the function calls Profit and Trend1 contain real
numbers as values.

In the previous section the function OHIGH returned an Indicator Vector with binary
values, 70" or ”1”. A number of predefined functions return Indicator Vectors, and a user-
defined trading algorithm or component should normally return a vector of this type. This
enables such compositions of Buy rules as:

OHIGH(10) & (Trend1>1 | Trend3>0.5) (10)

The Buy rule evaluates to a binary Indicator Vector with ”1” for stocks where OHIGH(10)
returned ”1” and either the short trend is greater than 1% /day or the long trend is greater
than 0.5%/day. Functions Trend1 and Trend3 are described below.

6.4 Predefined ASTA Functions

This section provides a list of all predefined functions that have been included to make it
possible to express compound trading rules interactively (as Buy rules and Sell rules)
and also to provide the developer of new algorithms with basic access functions as well as
some useful high level functions.

The functions are divided into four categories:

1. Feature Functions.

Feature Functions are primarily access functions to stock prices (Close, High, Low)
and traded Volume. Numerous functions for commonly used derived entities, such
as trend, gaussian volume, and volatility, are provided as well. A Feature Function
always returns a TSM.

2. Indicator Functions.

Indicator functions return an Indicator Vector most often used in the logical expres-
sions that define the Buy rules and Sell rules. Examples are standard technical
indicators, such as MACD and Stochastics. Other Indicator Functions implement a
dynamic stop-loss handling and achieved profit or loss since a stock was bought.

3. Operator Functions.

Operator functions perform a computation on one or several TSM:s and return an-
other one. Examples are computation of moving averages, minimum values in time
windows etc.

19

4. Utility Functions.

Some functions are support functions that may be of use primarily when debugging
new algorithms. Functions that extract stock names and actual dates are in this
category.

IMPORTANT:

All functions of type 1, 2, and 3 return a TSM. Each column represents one stock in the
global variable Stocks. Stocks is automatically set to all stocks in the market when the
system looks for stocks to buy (i.e. when the Buy rule is evaluated) and it is set to all
stocks in the Trader’s portfolio when the system tries to find stocks to sell (i.e. when the
Sell rule is evaluated). It is seldom necessary to use the Stocks variable explicitly in
Buy rules or Sell rules or when writing user-defined functions.

6.5 General Parameters

This section describes some parameters, which are common to many of the predefined
functions.

6.5.1 days

This parameter tells for which day or days the function should return values. In the case
of days being a vector, the result is a TSM with the same number of rows as elements in
the days parameter. Each row contains values as if computed on the corresponding day.

The default value for the days parameter is the global T, i.e. the current day.

Example 4 : Close(T) returns a single row TSM with close prices for all the stocks in
the global variable Stocks.

Example 5 : Trend3(T-9:T) returns a ten-row TSM with 5-day trends for all the stocks
in the global variable Stocks.

To simplify the description of functions below, the days parameter is not covered. The
Description field in the tables refers to each row.

6.5.2 plot

Many functions have the optional plot argument. By setting this parameter to the global
constant PLOT, the function is plotted versus time for all the selected stocks selected in
a row. The exact contents of the plot depends on the function. User-defined functions can
easily incorporate the plotting functionality, which is extremely useful during development
and debugging.

Only one function at a time can have the plot parameter set to a non-zero value (the global
constant PLOT equals to 1). The default value for the plot parameter is 0.

20

6.6 Feature Functions

Feature Functions are primarily access functions for obtaining stock prices (Close, High,
Low) and traded Volume. Derived entities such as ranks and trends are also provided.

All the Feature Functions return a TSM with one row for each day in the days parameter
and one column for each stock in the global Stocks variable. Table 2 lists all predefined
Feature functions in ASTA.

Function Parameters | Description

Close days, plot The close value

High days, plot The highest traded price during day day
Low days, plot The lowest traded price during the day
Volume days, plot The traded volume value
Rank1 days, plot The 1-day rank value
Rank2 days, plot The 2-day rank value
Rank3 days, plot The 5-day rank value
Rank4 days, plot The 20-day rank value
Trend1 days, plot | The 1-day trend (%/day)
Trend2 days, plot | The 2-day trend (%/day)
Trend3 days, plot | The 5-day trend (%/day)
Trend4 days, plot | The 20-day trend (%/day)
Gvoll days, plot The 2-day gaussian volume
Gvol2 days, plot The 5-day gaussian volume
Gvol3 days, plot The 10-day gaussian volume
Gvol4 days, plot The 20-day gaussian volume
Volatilityl | days, plot The 2-day relative volatility
Volatility2 | days, plot The 5-day relative volatility
Volatility3 | days, plot The 10-day relative volatility
Volatility4 | days, plot The 20-day relative volatility

Table 2: Predefined feature functions

Some special concepts need to be further explained:

6.6.1 k-step Return

The k-step return R}'(t) of a stock m with a price time series Close™(t) is defined as

Close™(t) — Close™(t — k)

Bi'(8) = 100- Close™(t — k)

(11)

By setting k at different numbers we get measures indicating how much the stock has
increased since its value k days ago. The Return values are not pre computed in ASTA.
The related Trend functions described in the next section can often be used instead.

21

6.6.2 k-step Trend

The k-step trend Ty (t) of a stock m is defined as
m 1 m
17 () = 7 BR(O). (12)

By setting k at different numbers we get measures indicating how much the stock has
increased per day since its value k days ago.

The four functions Trend1, Trend2, Trend3, and Trend4 can be used to access four
return measures for k = 1,2,5 and 20. They are computed and stored during market
initialization to speed up the use during the simulation phase.

6.6.3 Rank

The k-step Ranks A}" for stocks {s,..., sy} are computed by ranking the N stocks by the
k-step returns 1) . The ranking orders are then normalized so the stock with the lowest
Ry, gets rank —0.5 and the stock with the highest Ry gets rank 0.5. The definition of the
k-step Rank Aj* for a stock s,,, belonging to a set of stocks. {si, ..., sy} can therefore be
written as

order(R(t), {RL(t),...,RN(t)})—1
N -1

AT(t) = ~0.5 (13)

where the order function returns the ranking order of the first argument in the second
argument, which is an ordered list. R} is the k-step return (definition 11) computed for
stock m.

The Rank for a stock is a measure seldom or never seen as input to Automatic Trading
Systems. Since the ultimate goal is to ”beat the market”, i.e. to do better than the average
stock, it seems reasonable to have them at least available as potential inputs. The rank
concept is further analyzed in xxx.

The four functions Rankl, Rank2, Rank3, and Rank4 can be used to access four rank
measures for k = 1,2, 5 and 20. They are computed and stored during market initialization
to speed up the use during the simulation phase.

6.6.4 Gaussian Volume
The gaussian volume V,,(t) is defined as
Va(t) = (V) =my(t))/ov(t) (14)

where my (t) and oy (t) are computed in a running window of length n. Le.:

S V(i - i) and (15)

i=1

mv(t) =

S|k

22

n

oy = Jﬁ > (Ve =) = my(0)2 (16)

i=1

V,, expresses by how many standard deviations the volume differs from its running mean.
Therefore, it can be used as an indication of "abnormal” values caused by a sudden change
in market interest for a particular stock. That’s the reason why the sums in definition
15 and 16 don’t include today’s volume, i.e. V(). The four functions Gvoll, Gvol2,
Gvol3, and Gvol4 can be used to access four Gaussian volumes V,, for n = 2,5,10 and
20. They are computed and stored during market initialization to speed up the use during
the simulation phase.

6.6.5 Relative Volatility
The Relative volatility W,,(¢) is here defined as

Uc(t)

Wa(t) = 100- = 0

(17)

where m¢(t) and oo (t) are computed on the time series Close in a running window of
length n. lLe.:

me(?) :% >~ Close(t — i) and (18)

n—1i5

1 n—1
oc(t) = \l (Close(t —1i) — me(t))2. (19)
Definition 17 is recognized as the ”coefficient of variation” or ”relative standard deviation”
in statistics. Relative volatility W,, is preferred for ordinary volatility estimation by the
standard deviation, because it provides a measure that can be compared over longer time

periods and also between stocks with totally different price levels.

The four functions Volatilityl, Volatility2, Volatility3, and Volatility4 can be used
to access four volatilities W, for n = 2,5, 10 and 20. They are computed and stored during
market initialization to speed up the use during the simulation phase.

6.7 Indicator Functions

These functions return an Indicator Vector, i.e. a TSM with one row and one column for
each stock in the global variable Stocks. Each column can be used in logical expressions to
compose Buy rules and Sell rules. They can also be used with user-defined functions to
create compound trading rules. Table 3 lists all predefined Indicator functions in ASTA.

Some Indicator Functions require further explanation:

23

Function name | Parameters | Description
Profit - % increase in Close since buy of stock
Loss - % decrease in Close since buy of stock
Implements a dynamic stop-loss function:
Stop loss is initially set to S1
If Profit>P1, change the stop loss to S2
Stoploss S1, 52, P1 Stoploss returns 71”7 iff the Loss is less than
the dynamic set stop loss.
This function keeps track of each stock separately.
Underlow L 1”7 iff Close crosses a L day min
of Low from above
. 717 iff Close crosses a L day max of High from
Overhigh L below and High(T-1) is less than the same max
717 iff day number is in vector dys
Days dys (1:Monday...7:Sunday)
Stoch K,Ks,S Implementation of the technical indicator Stochastics.
Macd K,D,S Implementation of the technical indicator MACD

Table 3: Predefined indicator functions

6.7.1 Profit and Loss

The system automatically keeps track of the change in price of each stock since it has been
bought. The Profit is defined as

Profit(t) = (Close(t) / BuyPrice — 1) % 100. (20)

The Loss is sometimes a more convenient measure and is defined as

Loss(t) = (1 — Close(t) / BuyPrice) * 100. (21)

BuyPrice is the average buy price of each stock in a portfolio. Profit and Loss are not
defined for stocks outside the portfolio.

The functions are of great use when defining trading rules. For example, a simple Sell
rule may be defined as

Loss>10 | Profit>20 (22)

The Sell rule evaluates to an Indicator Vector with ”1” for stocks where either Loss
returned a value less than 10 or Profit returned a value greater than 20. A more complex
function based on the profit and loss concept is Stoploss.

6.7.2 Stoploss

An often mentioned ”trading rule to live by” is that of never allowing a profitable trade
to turn into a loss. This idea is implemented in the function Stoploss. Each stock gets a

24

stop-loss parameter of its own. This parameter is initialized to the value S1 when a stock
is bought. It is changed to S2 when the Profit function registers more than P1% profit.
Typical value for the parameters P1, S1 and S2 are 20%, 10%, and -5% respectively.
These values gives the following behavior during trading:

1. The stock will be sold immediately if the price drops by more than 20% below pur-
chase price, thus cutting the maximum loss.

2. If the price ever rises by 10% above the purchase price, a consecutive drop in price
to 5% above purchase price will issue a sell signal. In this way, a profitable trade will
never turn into a loss.

6.8 Operator Functions

These functions perform an operation on one or several TSM:s and return another TSM
with transformed values.

All Operator Functions return a TSM with one row for each day in the days parameter and
one column for each stock in the global Stocks variable. The parameter x (same applies
to x1 and x2) can be either a TSM or a string with the name of a function returning a
TSM.

The parameter days:

e If x is a TSM, the days parameter should be row numbers in the matrix. The default
value for days is the last row in the matrix.

e If x is a string, the days parameter should be a vector with day numbers such as T,
T-1 etc. The default value for days is T.

The Operator Function performs its operation on each of the lines in the x matrix and
returns a TSM with the result for each row. In the following description of Operator
Functions, the d variable is implicitly assumed to run through the full range defined by
the days parameter. Each value on d results in one row in the output TSM.

Table 4 lists all predefined Operator functions in ASTA.

Function name | Parameters Description

Minn x, L1, days, plot | The L1-day-minimum value in the rows of x
Maxx x, L1, days, plot | The L1-day-maximum value in x

Mav x, L1, days, plot | The L1-day-moving av. for columns in x
Stdev x, L1, days, plot | The L1-day-st.deviation for columns in x

717 iff Mav(x1,L1) crosses Mav(x2,L2)
from below. The A argument (optional) is the
min required angle for the crossing.

x1,L1,x2,L2,A,

Mavx days,plot

Table 4: Predefined operator functions

25

6.8.1 Minn

Computes the minimum value in a L1 days long window backwards.
If x is a string, Minn is defined as:Minn = min(z[d — L1+ 1 :d])

where the square brackets denote function invocation.
Example 6 Minn('Close’,4,T)
which will generate a 1 row TSM: min(Close(T' — 3 :T)).

Example 7 Minn('Close’,4,T —1:T)
: : [min(Close(T' —4:T — 1))
which will generate a 2 row TSM: (min(Close(T — 3: T))

If x is a not a string, Minn is defined as:Minn = min(z(d — L1+1:4d,:)).
Example 8 Minn(Z,4,10) where Z is a 10 rows long TSM.
which will generate a 1 row TSM: min(Z(7 : 10 ,:)).

Example 9 Minn(Z,4,9:10) where Z is a 10 rows long TSM

which will generate a 2 row long TSM: (min(Z(10 =4+ 1:10,,))) .

min(Z(10 —4+1:10 ,:))

6.8.2 Maxx, Mav and Stdev

These functions have the same parameters and behavior as Minn above. Just substitute
min for max, mean, and std.

6.8.3 Mavx

Crossings between moving averages of various signals are often used in the definition of
traditional technical indicators. The Mavx function supplies a convenient way to imple-
ment the detection of such crossings. The optional argument A makes it possible to specify
the minimum angle for the crossing. Crossings at lower angles than the specified one will
not generate a logical 71”7 at that point. Mavx can be used to detect both crossings from
below and above by changing the order of L1 and L2 arguments.

Example 10 Mavz(’Close’,2, ’Close’,20,45) returns a binary Indicator Vector with ”17 iff
a 2 day moving average of Close crosses a 20 day moving average of Close from below in
an intersection angle no less than 45 degrees. The computation is performed "today” since
the days parameter defaults to T.

26

6.9 Utility Functions

These functions are support functions that may be of use primarily when debugging new
algorithms. They can not be included in Buy rules and Sell rules since they don’t return
Time Series Matrices. Table 5 lists all predefined Indicator functions in ASTA.

Date days | Vector with the real date (yymmdd) for days
Stockname | s String with the name of stock s.

Table 5: Predefined utility functions

7 Examples

In this section, some examples of runs with different Buy rules and Sell rules are presented.
In figure 4 the stochastics indicator is investigated. The Stochastics indicator is very
popular in real trading and is defined as:

The results shown in figures 4 and 5 are quite stunning, with an average annual profit of
53.4% compared to the 16.3% achieved by the index. Notable is that the only negative
result is for the year 1997, where the strategy only made 17.7% while the index increased
23.8%. To investigate the trades further, the single year 1993 is run separately in figure 6.
The buy rule

Stoch(30,3,3,20,80,PLOT)>0 (23)

has the PLOT option enabled in the last argument. This enables generation of separate
graphs with the signals from the Stoch function. In figure 7 the components of the Stochas-
tics indicator are displayed. The two horizontal lines mark the buy level (80%) and the
sell level (20%). When the ” Oscillator %K” value passes these lines, a buy or sell signal is
issued. To analyze the generated trades in even more detail, the ”dump trades to window”
button has been checked. All generated trades will be dumped in ascii form in the Matlab
command window. The result is presented in figure 8.

ASTA

From date To date Courtage (%) Min Courtage Min buy (%) Max buy (%) Initial Cash
per trade per trade

| g7 | o7 | 0.15 | o0 | 5 | z0 | 100000

Buy rule IStDch(30,3,3,ZD,SD]>D

Sell rule |smch(30,3,3,zn,8m<n
Parameter “alues

Run | | Save graph | Optimze I | |
Market: 32 stocks. Dates: §20104-280409 (4071 days) Durmp Trades Buy price: Sell price:

Load I | astasxg I~ To window @« Today's & Today's
Generate I FEG [~ Taofile © Tomorrow's € Tomorrow's
Save I | [~ Diagram

Perfarmance:
Annual profits:

a7 88 89 =lu} 91 =k =k 94 a5 96 a7 Hean Total
Strategy profit : 27.0 53.2 7Ti.6 -8.3 9.6 32.4 313.6 22.5 25.1 38.3 1.7 53.4 3863.5
Index profit : -7.9 51.9 E22.9 -285.7 5.4 -0.0 5z.1 4.6 18.3 35.Z2 2Z5.8 16.3 310.3
Difference profic : 34.5 1.3 50.6 20.4 4.2 32.4 Z61.5 18.0 6.9 0.1 -z2z.1 37.1 3553.Z2
Nuwber of trades H 35 36 35 - 71 87 55 73 43 50 64 57 630

ISmit.l:h to graph window for performance plots

Help End

Figure 4: ASTA command window with Stochastics buy and sell rules

Equity curves for Trading (3864%) and Index (310%)
50 I

_— Trading
_— Index

40

N VAR
20 MM
1 J

s’

e

O o LRSS Eifid | marnerd

—

0
Jan86 Jan88 Jan90 Jan92 Jan94 Jan96 Jan98

Mean annual profits Trading:53% Index:16%

400

300

200

100
N i B

-100

Trading (left) Index (right)

87 88 89 90 91 92 93 94 95 96 97

Figure 5: Performance for Stochastics indicator.

28

ASTA

From date To date Courtage (%) Min Courtage Min buy (%) Max buy (%) Initial Cash
per trade per trade

| 93 | 93 | o.15 | a0 | 5 | z0 | 100000

Buy rule |ScochtSD,S,S,ZD,ED,PLOT)>D

Sell rule IS:D:htSD,S,S,ZD,ED]<D

Parameter Walues

Run | | save graph Optimze || |

Martket: 32 stocks. Dates: 820104-930409 (4071 days) Dump Trades Buy price: Sell price:

Load I astasxg ¥ Towindow & Today's & Today's

Generate 3XG " Tofile Tomorrow's € Tomomow's

Save | ™ Diagram

Performance:

Linnual profits:

93 Hean Total
Strategy profit : o 352.1 352.1 35z2.1
Index profic : 5201 5z.1 5z.1
Difference profit 1 300.0 300.0 300.0
Munber of trades H 41 41 41

|5w1tch to graph window for performance plots

Help End

Figure 6: ASTA command window with Stochastics buy and sell rules. The PLOT option
in the Buy rule generates separate plots with signals for each stock. The "Dump trades to
window” check box generates a list of all trades in the Matlab command window.

8 Viewing the Trader as an Objective Function

Now that we have the simulation system working, we can start using it for many interesting
tasks, some

of which are described in section 1.1. One of the proposed areas is to view the performance
of the system as a function P of the trading rules. In the following we use the mean excess
annual profit for a fixed time period (i.e. the profit minus the increase in index) as a one
dimensional performance measure. Denoting this performance by p, we get

p = P(Buy rule, Sell rule). (24)
Example 11 p = P("Trend3 > 0.5 & Gvoll > 1.5, 'Loss > 10 | Profit > 20/)

The Matlab function fasta.m does implements the function P. It computes then mean
excess annual profit given a Buy rule and a Sell rule. It is called from the interactive
version of ASTA and can also be called from a user program for optimization or other
purposes.

8.1 Optimization

The obvious wish to maximize the profit p can be tackled in two ways:

29

ABB A
60

55 r/m /\V_,.\/J
50 /-/_[\«WWJ

e S
40 /A/U\/

35
Jan93 Apr93 Jul93 Oct93 Jan94

Stochastics indicator

S 100 A a VAl

S sl |/ |\

o LY\]] N

g 1 A 1an AL TA

£ 20— A TAWA | UV
. L !

Figure 7: Stochastics buy and sell signals for the ABB stock. Upgoing bar denotes a buy
signal and downgoing bar denotes a sell signal.

1. Parameterizing the Buy rule and Sell rule. I.e. introducing parameters within the
rules. Example:

Buy rule =’'Close(T) > Maxxz(’High’, Nhigh,T — 1)’
Sell rule = 'Loss > L | (Profit > P & Close(T) < Close(T — 1))’
The profit P can now be optimized with respect to the parameters Nhigh, L and P.

2. Viewing the Buy rule and Sell rule as symbolic expressions. The optimization
then turns into a search problem. The optimal Buy rule and Sell rule should be
composed of atomic functions and operators from a set 2. Example:

Q = {Trendl, Trend2, Gvoll, Gvol2, Close(T'), Profit, Loss,&, | , >, < }

The profit P can now be optimized by combining elements in 2 to legal Buy rules and
Sell rules.

In the general case, approach 1 is of course included in approach 2. The latter is however
most naturally implemented in a genetic framework or with Inductive Logic Programming,
while the former is a traditional parameter estimation problem. Genetic Programming
applied to generation of trading rules can be found in [4]. Some experiments along the first
approach have been conducted. One example is shown in figure 9, where the buy and sell
rules from the example above are optimized with respect to the Nhigh parameter. The
graphs are automatically generated by the ”Optimize” function in the ASTA system. The
results are placed on a number of eps files of which some have been included in figure 10.

Figure 8: Dump of generated trades from Stochastics trading rules for the year 1993.

Figure 9:

Mazxz(’High’, Nhigh, T — 1)’.

Trade Date No.
1 930105 77
2 930105 79
3 930105 1535
4 930107 375
5 930107 329
6 930108 349
7 930108 323
4 930115 431
9 930115 351

10 930121 258

11 930121 64
12 830127 54

13 930302 -64
14 830322 -131
15 930323 -431
16 930325 -3&3
17 930329 4897
15 930406 2031
19 930519 -258
20 930525 113
Z1 930608 -329
Z2 930610 154
23 930621 -349
24 930621 132
25 830716 -233
Z6 930719 308
27 930720 235
Z8 930906 -235
Z9 930918 -308
30 930920 za7
31 930921 -245
3E 93092z -Tia
33 930923 672
34 930927 562
35 931004 495
36 931108 -227
37 931111 136
38 931lze -672
39 931203 764
40 931215 -136

Stock

Skandia
Sydkraft C
Allgon B

SHE &

Mokia &

Hennes & Mauritz
554B A

dvesta Sheffield
SHE 4

ABE A

Kimmewvik B
Skandia
Kimmewvik B
Skandia

dvesta Sheffield
554B A

Allgon B

Allgon B

ABE A

Skanska B

Nokia 4

Sydkraft C
Hennes & Mauritz
Skanska B
Sydkraft C
Avesta Sheffield
ABE 4

ABE 4

Avesta Sheffield
Ericsson B
dkanska E

SHE &

Hokia &

Hemnes & Mauritz
ABE A4

Ericsson B
Skandia

Hokia &

Yolvo B

Skandia

ASTA

Price
85.27 11108
82.60 8525,
4.28 6574,
26.34 9875,
30.00 9870.
28.20 9341
30,50 9351
2Z.68 3776
27.54 3771
38,40 3907
gl.00 514
97. 46 5262
73.00 -5056
93.71 -12275
23.16 -5%a0
33.75 -10%01
5.45 26675
5.51 1lla6
43,70 -11274
97.50 11017
456.25 -15216
97.95 15083
33.00 -13262
93.00 13068
93.56 -21799
34.97 10770
46,00 10810
47,20 -110%2
36.86 -11352
97.83 Z2207
138.00 -33310
95.00 -58370
&0.00 53760
43. 20 Z4ETE
49,20 24354
102.87 -23350
170.55 23194
100.50 -67536
88.20 67384
159.30 -Zl654

o5
22
Tz
96
[uli)

.50
.50
.63
17
.20
.oo
.68
.oo -Z.
.62 3.
.37 Z.
.25 10.
.18
.34
.60 13.
.50
.25 54,
.58
.oo Gd.
.oo
.15 0.
.39
.oo
.oo 2.
.70 5.
W73
.00 40.
.00 Z51.
.00
.40
.00
.81 5.
.39
.00 25.
.19
.94 -6.

Total Profit (%)

47
75

13

6l
41

37
03

15

62

59

Wealth Cash
93343.95

86728.73

99730.00 80064, 01
70119, 50

99585.62 60159, 50
50260, 08

93560.44 40318.58
30525, 47

100374.14 20666.71
10702, 32

Hall 5425, 32

Hall 84,45
128010.13 5051.23
131216.32 17280.75
Wall 27165.09
132663.45 37991.32
132626.85 11247.39
132246, 33 1.77
164709,.29 11186.39
Hall 94,54
157009.69 15221.10
154210.74 54,44
13226.55

155873, 28 63,55
197758.60 21773.13
197540, 39 10922, 70
199141.88 30,11
273799, 16 11032, 41
ZTE925.45 ZE322.39
Z72115.39 33.78
2706852, 53 33753.80
Z69365.98 10Z627.47
270719.82 43795, 81
Z82121.66 24450, 66
309655, 25 4z, 43
Mall 23303.54
420195, 43 4z, 48
399726.79 67477, 30
387109.87 85,89
434649, 03 2l661.02

Stocks From date To date Courtage (%) Min Courtage Min buy (%) Mlax buy (%) Initial Cash
per trade per trade
[=xzc [a7 [a7 [[o0 [s [z0 [100000
Buy rule [close (Ti> Maxx('High' Nhigh, T-1) bl Kl
Sell rule ILDss>lﬂ | (Profit>1i0 & Close (T)<Close (T-1)) <|=
Paramester “alues

Run Save graph Optimize Hhigh 1:50
Market: 32 stocks. Dates: 820104-980409 (4071 days) Dump Trades Buy price: Sell price:

Load astasxg [Towindow & Today's & Today's

Generate SXG ™ Tofile Tomorrow's Tomorrow's

Save I Diagram
Performance:
[Results from optimization written to eps files on ciiborsiwork

Help End

Optimization of the Nhigh parameter. Buy rule:

Close(T — 1))

'Close(T)

30

>

Sell rule: Loss > L | (Profit > P & Close(T) <

31

12 60Q
10- 1
55Q 1
8, o
2 5 ésoc 1
S g
o y— i
o 4 | S45C
) [
L 2 1 E400 1
i 2
(=N 4 —
g0 S350 1
= B8
300 1
_4, i
6l | 250 1
8o 5 %% 5 10 15 20 25 30 35 40 45
Nhigh
QOutliers removed
4 12 T T T
10 g
§ 20 1
kS X 8 1
= g
[} i o
§ 0 S 6r 1
X ?
[0}
5-20 1 Sa 1
é >
c
s 8 2 1
2-40 1 =2
c
< oF 1
-60 1 5
-80 L L L L L L L L -4 L L L L L L L L
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Nhigh Nhigh
Qutliers removed
1 1.2 : : ;
0.8 1 1+ g
0.6 1 0.8 :
8 ke)
S 04 1 %06 :
(0] (0]
2 =
£ 02 1 204 :
wn - n Y
0 1 0.2 g
0.2 1 oF :
-0.4 L L L L L L L L _0.20 L L L L L L L L
0 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Nhigh Nhigh

Figure 10: Trading results as a function of the Nhigh parameter. Stocks: SXG. Years:87-
97. Buy rule: Close(T)>Maxx(’High’,Nhigh,T-1). Sell rule: Loss>10 | (Profit>20 &
Close(T)<Close(T-1))

32

It must be emphasized that optimization of the performance is a multi dimensional pa-
rameter estimation problem. The graphs presented in this report show the profit P as
a function of one of the involved parameters while the rest of the parameters are fixed.
The main purpose is to illustrate the possibilities and problems involved in even a one
dimensional optimization.

From this summary graph (top left) for the entire training period we can deduce that the
highest profit is achieved for a Nhigh somewhere between 10 and 15. However, looking
at the data at a higher resolution reveals a more complicated situation. In the top right
diagram the same relation is plotted with one curve for each year in the training data set.
From this we can learn at least two important points:

1. The spread between individual years is very high.

2. The location of the maximum is not obvious.

This behavior of data has shown typical for most variables investigated. The profit can not
be described as a function of measurable variables without introducing a dominant noise
term in the function. It actually looks as if the underlying process generating the data is
different for each year.

Let us view the annual excess profit as a stochastic variable P[f] where # stands for one
particular setting of the parameters that affect the profit. In the shown example, 6 is
the Nhigh parameter. P[f] has been sampled once per year during the eleven years in
the data set; {P1[9], PQ[H], Pg[e], P4[0], P5[9], PG[Q], P7[0], Pg[e], Pg[e], Plo[e], P11[0]} Viewed
this way, it is clear that the task of tuning the parameter ¢ to find the "maximum” profit
P is not well defined. P is a stochastic variable and consequently has no ”maximum”.
It has a probability distribution with an expectation value F and a variance V. It’s
important to realize that tuning 6 in order to maximize F[P|[f]] is just one of the available
options. Maximizing E[P[f]] gives the highest mean performance. Another possibility is
to maximize the lower limit of a confidence interval. Since the risk factor is always a major
concern in investments, and since the spread between individual years obviously can be
very high, this sounds like a promising idea. A lower limit P, for a confidence interval
could be created:

Biow = E[P[0]] — /V[P[0]] (25)

where V[P] is the variance of the stochastic variable P. Yet another possibility is to use
the Sharpe Ratio SR which expresses the excess return in units of its standard deviation
as

(26)

The Sharpe Ratio is normally used to evaluate the performance of a trading strategy
(Sharpe [?],[?]). Choey and Weigend [3] however suggest to use the Sharpe Ratio as
objective function in portfolio optimization and derive a learning algorithm for artificial
neural networks. Due to the high noise level in the data we have added a modified Sharpe
Ratio where the outliers have been removed. The largest and smallest P[] for each 6
has been removed before the expectation value and standard deviation are computed. An

33

optimization of one of the parameters in the Stochastics indicator will serve as an example.
We set up an optimization with buy and sell rules according to

Buy rule = ’Stoch(30,3, 3, Sellevel, 80)’
Sell rule = ’Stoch(30,3, 3, Sellevel, 80)’

The Sellevel parameter controls the position of the lower horizontal line (refer to figure
7) that generates sell signals in the Stochastics indicator. The excess profit is shown
as a function of the Sellevel parameter in the top diagrams of figure 11. Unfortunately
the function is still very bad behaved, and a clear maximum can still not be observed.
By comparing the two top diagrams it is however clear that the mean profit is totally
dominated by the results from one of the years (1993). This carries over to the Sharpe
Ratio which has the same overall shape as the two profit diagram. The Median based
Sharpe Ratio avoids the extreme values in the ”outliers” and produce a more stable curve
than the ordinary Sharpe Ratio.

A similar analysis of the effect of varying the Buylevel parameter is presented in figure 12.
The function is also in this case very noisy and varies greatly from year to year. The need
to improve the evaluation procedure with methods such as those described in section 4.2.5
becomes more and more apparent.

9 Results and further development

The presented system provides a powerful tool for development and evaluation of trading
algorithms. Parameter settings can be tested and data screening can easily be performed
interactively. As was mentioned in section 1.1, one of the reasons the ASTA system was
developed was to act as an objective function when tuning parameters in the models or
when finding the general structure of trading rules for example within a generic framework.
This track can be examined considerably. It is also possible to get the trades dumped out
of the system and use them as training data in traditional or novel classification methods.

The dangers with "data snooping” got highlighted by breaking down the performance
measures into shorter intervals. The inherent uncertainty resulting from the noisy processes
involved however calls for more computer intensive simulation schemes in order to achieve
statistically significant performance measures.

34

References

1]

A. Atiya. Design of time-variable stop losses and profit objectives using neural networks.
In A. S. Weigend, Y. S. Abu-Mostafa, and A.-P. N. Refenes, editors, Decision Tech-
nologies for Financial Engineering (Proceedings of the Fourth International Conference
on Neural Networks in the Capital Markets, NNCM-96), pages 76-83, Singapore, 1997.
World Scientific.

Y. Bengio. Training a neural network with a financial criterion rather than a prediction
criterion. In A. S. Weigend, Y. S. Abu-Mostafa, and A.-P. N. Refenes, editors, Deci-
sion Technologies for Financial Engineering (Proceedings of the Fourth International
Conference on Neural Networks in the Capital Markets, NNCM-96), pages 36-48, Sin-
gapore, 1997. World Scientific.

M. Choey and A. S. Weigend. Nonlinear trading models through Sharpe Ratio maxi-
mization. In A. S. Weigend, Y. S. Abu-Mostafa, and A.-P. N. Refenes, editors, Decision
Technologies for Financial Engineering (Proceedings of the Fourth International Con-
ference on Neural Networks in the Capital Markets, NNCM-96), pages 3—22, Singapore,
1997. World Scientific.

A. N. Edmonds, D. Burkhardt, and O. Adjei. Genetic programming of fuzzy logic pro-
duction rules with application to financial trading. In A.-P. Refenes, Y. Abu-Mostafa,
J. Moody, and A. Welgend, editors, Neural Networks in Financial Engineering, Proc.
of the 3rd Int. Conf. on Neural Networks in the Capital Markets, Progress in Neural
Processing, pages 179188, Singapore, 1996. World Scientific.

G.Leitch and J.Tanner. Economic forecast evaluation: Profit versus the conventional
error measures. The American Economic Review, pages 580-590, 1991.

T. Hellstrom and K. Holmstrém. Predicting the Stock Market. Technical Report
IMa-TOM-1997-07, Department of Mathematics and Physics, Mélardalen University,
Sweden, 1997.

J. E. Moody. Shooting craps in search of an optimal strategy for training connectionist
pattern classifiers. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances
i Neural Information Processing Systems 4, Proceedings of the 1991 NIPS Conference,
pages 847-854, San Mateo , CA, 1992. Morgan Kaufmann Publishers.

J. E. Moody and L. Z. Wu. Optimization of trading systems and portfolios. In A. S.
Weigend, Y. S. Abu-Mostafa, and A.-P. N. Refenes, editors, Decision Technologies for
Financial Engineering (Proceedings of the Fourth International Conference on Neural
Networks in the Capital Markets, NNCM-96), pages 23-35, Singapore, 1997. World
Scientific.

35

A
n

350

Mean excess profit %
PONON W oW A
Qe g @ 0 o
Il Il Il Il Il Il

N
Q
i

Annual Mean excess profit %

® ‘] 0 40 50 6 ‘ 40
Sellevel Sellevel

200¢

150¢

Sharpe ratio

100¢

Total number of trades

500

O 40 20 30 40 50 60 70 80 % 10 20 30 40 50 60 70 80
Sellevel Sellevel

2

o |

g 15

[

=

[

» 1 1

o

(]

(2]

®©

o)

g 0% |

o

(]

2

O, |

0.5 1 1 1 1 1 1 1

0% 10 20 30 40 50 60 70 80
Sellevel

Figure 11: Trading results as a function of the Sellevel parameter. Stocks: SXG. Years:87-
97. Buy rule: Stoch(30,3,3,Sellevel,80)>0. Sell rule: Stoch(30,3,3,Sellevel,80)<0

36

A
30 4 8

B 20 1 @

o]

a 3

Q

o 10- 4 c

8 5

g =

3 =

= O 102

= ;

-10+ g N
10 ‘\/\"1 A

235 30 40 50 60
Buylevel
l. T

100

Sharpe ratio
o
e tn

)
]
T

-1.5 L L L L
60
Buylevel

100

Total number of trades

Buylevel

100¢

30

50

60 80 90 100
Buylevel

Figure 12: Trading results as a function of the Buylevel parameter. Stocks: SXG. Years:87-
97. Buy rule: Stoch(30,3,3,20,Buylevel)>0. Sell rule: Stoch(30,3,3,20,Buylevel)<0

