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Abstract

We construct a computer simulation of a repeated double-auction market, designed to match
those in experimental-market settings with human subjects, to model complex interactions

among arti�cially-intelligent traders endowed with varying degrees of learning capabilities.
In the course of six di�erent experimental designs, we investigate a number of features of our
agent-based model: the price e�ciency of the market, the speed at which prices converge
to the rational expectations equilibrium price, the dynamics of the distribution of wealth

among the di�erent types of AI-agents, trading volume, bid/ask spreads, and other aspects
of market dynamics. We are able to replicate several �ndings of human-based experimental
markets, however, we also �nd intriguing di�erences between agent-based and human-based
experiments.
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1 Introduction

One of the most powerful ideas of modern economics is Adam Smith's (1776) Invisible Hand,

the fact that agents acting in their own self-interest can reach an optimal allocation of scarce

resources. This remarkable feature of perfectly competitive economies is due, of course, to the

presence of markets, exchanges where buyers and sellers trade with each other and, in doing

so, establish prices and quantities that equate supply and demand. Although these ideas

were developed over two centuries ago, it is only within the past two or three decades that

economists have begun to explore the speci�c mechanisms, i.e., the market microstructure, by

which markets aggregate and disseminate information dynamically in a world of uncertainty

and asymmetric information.

In many of these investigations, the theoretical analysis quickly becomes intractable for

all but the simplest stylized models, and even the existence of an equilibrium cannot be

guaranteed in many cases.1 An alternative to this theoretical approach is an experimental

one in which individuals are placed in a controlled market setting, given certain endowments

of securities or cash or both, and allowed to trade with each other.2 By varying the market

structure, the design of the securities that can be traded, and the individuals' endowments,

rewards, and information set, we can learn a great deal about the actual behavior of eco-

nomic agents in a simple competitive environment and how markets perform their resource-

allocation function so e�ciently. Documenting and studying the interactions of optimizing

individuals in an experimental setting is an important �rst step towards understanding their

behavior in real markets.

However, the experimental-markets approach has its own limitations. In particular, al-

though the market structure and economic environment are controlled by the experimenter,

the motives and information-processing abilities of the economic agents are not. Therefore,

it is often di�cult to assess the impact of risk aversion, learning abilities, and the degree of

individual rationality on prices and quantities in experimental markets. Moreover, there is

no simple means to determine how agents process information and derive their trading rules

in any given experiment, hence no assurance that any single experimental result is not an

1See Cohen, Maier, Schwartz & Whitcomb (1986), Schwartz (1993), O'Hara (1995), and Campbell, Lo &

MacKinlay (1996, Chapter 3) for overviews of the theoretical and empirical market microstructure literature.
2Davis & Holt (1993) and Kagel & Roth (1995) are excellent surveys of this fast-growing literature.
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artefact of the particular subjects in the experiment.

In this paper, we advocate a third approach|the use of arti�cially intelligent agents|to

address some of the limitations of the theoretical and experimental alternatives. AI-agents

are computer programs that contain certain heuristics and computational learning algo-

rithms, with the intention of capturing particular aspects of human behavior. Although

AI-agents are �gments of our (and the computer's) imagination, their preferences and learn-

ing algorithms are transparent and, unlike experimental subjects, can be carefully controlled

and modi�ed. Using AI-agents, we can conduct a far broader set of experiments involving

more complexities than with human agents. Moreover, the outcomes of such experiments are

often more readily compared to theoretical models because we have eliminated the human

\wildcard".

This approach, now commonly known as \agent-based models",3 allows us to explore

new areas of economic theory, especially in dynamic markets with asymmetric information,

learning, and uncertainty|a combination that poses many insurmountable technical chal-

lenges from a theoretical perspective. However, agent-based models also bring with them

new and untested algorithms, parameters that must be calibrated, and other ad hoc as-

sumptions that are likely to be controversial. To address these concerns, we propose using

data from human experimental markets to validate and calibrate our agent-based models.

In particular, we have designed our market structure along the same lines as those in the

experimental-markets literature and show that simple AI-agents|agents endowed with only

rudimentary computational learning abilities|can replicate several features of human-based

experimental markets.

Speci�cally, we construct a double-auction market for a single stock that pays one liqui-

dating state-contingent dividend at the end of each trading period, and we allow several types

of AI-agents|each endowed with its own preferences, information, and learning algorithm|

to trade with each other during repeated trading periods. In the course of six di�erent ex-

perimental designs, we investigate a number of features of our agent-based model: the price

e�ciency of the market (how close market prices are to the rational expectations equilibrum

(REE), the speed at which prices converge to the REE, the dynamics of the distribution of

3Another term that has been proposed is \agent-based computational economics" or ACE. See

http://www.econ.iastate.edu/tesfatsi/ace.htm for further discussion.

2



wealth among the di�erent types of AI-agents, trading volume, bid/ask spreads, and other

aspects of market dynamics. In these experiments, we are able to replicate several �ndings

of human-based experimental markets, e.g., the dissemination of information from informed

to uniformed traders, the aggregation of information from traders with private information,

and convergence to the REE price after a number of trading sessions.

However, we also �nd signi�cant di�erences between agent-based and human-based ex-

periments. For example, in one of our experiments in which agents have heterogeneous

preferences and heterogeneous information, prices never converge to the REE; the opposite

result was reported by Plott and Sunder (1982) in an experimental market with human sub-

jects. Such di�erences may point to key features of human learning and inference that we

have not captured in the design of our AI-agents, and are just as important as for developing

a better understanding of how human markets operate as the features that we are able to

replicate.

In Section 2, we provide a brief review of both the experimental and computational

literatures. We describe our market environment in Section 3 and provide the details of

the particular experiments we conduct. The results of those experiments are summarized in

Section 5, and we conclude in Section 6.

2 Review of the Literature

Our agent-based modeling approach draws on at least three distinct literatures: the market

microstructure literature, the experimental markets literature, and the simulated markets

literature, and we provide brief reviews of each in Section 2.1{2.3. However, we also wish to

mention the recent paper by Farmer (1999) and the evolutionary view of �nancial markets

espoused by LeBaron (1995) and Farmer & Lo (1999). In those papers, the emphasis is

on modeling the dynamic interactions among agents of several types, where behavior is not

always microfounded by optimizing expected utility and markets are not always in equilib-

rium. Instead, heuristics are often proposed as reasonable approximations to behavior, and

the implications of those heuristics|in and out of equilibrium|are developed in some detail.

In this respect, Farmer (1999) and other agent-based models owe a great intellectual debt
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to the work of Herbert Simon (see, for example, Simon (1982)), whose notion of \bounded

rationality" is the foundation on which much of the recent behavioral economics literature is

built. Moreover, many of Simon's recent contributions have been at the intersection of eco-

nomics, psychology, and computer science, providing enormous stimulation and inspiration

for agent-based models and other related literatures.

2.1 Market Microstructure

The market microstructure area now has a well developed and mature literature which, some

have argued, has its roots in Adam Smith's (1776) An Inquiry into the Nature and Causes

of the Wealth of Nations. This literature provides important background and context for

our experiments because many of the questions and issues that we focus on are those that

the market microstructure literature has considered theoretically and empirically.

Although our approach takes a decidedly di�erent tack from the recent market mi-

crostructure literature, nevertheless, there are several important papers that provide mo-

tivation and inspiration for the agent-based models. For example, Garman (1976) developed

one of the earliest models of dealership and auction markets and went so far as to deduce

the statistical properties of prices by simulating the order-arrival process. Cohen, Maier,

Schwartz & Whitcomb (1983) and Hakansson, Beja & Kale (1990) propose more complex

simulation models of market-making activities. And a number of papers develop optimal

market-making behavior in certain theoretical contexts, e.g., Amihud & Mendelson (1980),

Ho & Stoll (1981), and Kyle (1985). Cohen et al. (1986), Schwartz (1993), O'Hara (1995),

and Campbell et al. (1996, Chapter 3) provide excellent overviews of the market microstruc-

ture literature.

The focus of this literature is primarily the structure of markets and market-making

activities. In contrast, the focus of agent-based models of �nancial markets is broader. In

this paper, we provide enough market structure to enable our agents to trade with each

other, but we also specify the preferences and learning heuristics of all market participants,

and it is the interaction of these two sets of speci�cations that yields the rich implications

that we shall describe in Sections 4 and 5.
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2.2 Experimental Markets

Davis & Holt (1993) and Kagel & Roth (1995) provide excellent coverage of the recent

literature in experimental markets. In much of this literature, the rational expectations (RE)

model has been the main benchmark, and has had mixed success in various studies. Studies of

the informational e�ciency of experimental markets relative to the RE benchmark generally

fall into two categories: information dissemination between fully informed agents (\insiders")

and uninformed agents, and information aggregation among many partially informed agents.

The former experiments investigate the common intuition that market prices re
ect insider

information, hence uninformed traders should be able to infer the true price from the market.

The latter experiments explore the aggregation of diverse information by partially informed

agents, a more challenging objective because none of the agents possesses full information

(traders identify the state of nature with certainly only by pooling their private information

through the process of trading).

Plott & Sunder (1982) and Forsythe, Palfrey & Plott (1982) investigate markets with

insiders and uninformed traders. They show that equilibrium prices do reveal insider in-

formation after several trials of the experiments and conclude that the markets disseminate

information e�ciently. Furthermore, Plott & Sunder (1982) show that even in markets in

which traders are paid di�erent dividends (the same security pays one trader a dividend of 3

in state A but pays another trader a dividend of 5 in the same state, proxying for di�erences

in preferences between the two traders), prices still converge to the REE. They attribute the

success of the RE model to the fact that traders learn about the equilibrium price and the

state of nature simultaneously from market conditions.

On the other hand, results by Plott & Sunder (1988) and Forsythe & Lundholm (1990)

show that a market aggregates diverse information e�ciently only under certain conditions:

identical preferences, common knowledge of the dividend structure, and complete contingent

claims. These studies provide examples of the failure of the RE model and suggest that

information aggregation is a more complicated situation. In a related study, O'Brien & Sri-

vastava (1991) �nd that market e�ciency|de�ned as full information aggregation|depends

on \complexity" of the market, as measured by market parameters such as the number of

stocks and the number of trading periods in the market.

5



2.3 Simulated Markets

Computer simulations of markets populated by software agents extend the experimental

approach by allowing the experimenter to test various theories of learning behavior and

market microstructure in a controlled environment. Unlike human-based experiments, in

which the dynamics of the subjects' behavior over many trading periods are almost never

modeled explicitly, agent-based models can easily accommodate complex learning behavior,

asymmetric information, heterogeneous preferences, and ad hoc heuristics.

Garman (1976), Cohen et al. (1983), and Hakansson et al. (1990) were early pioneers

of agent-based models of �nancial markets. More recently, Gode & Sunder (1993) uses

this framework to demonstrate a remarkable property of competitive markets: even in the

absence of any form of learning or intelligence, agents trading randomly eventually converged

to the REE as long as budget constraints were continually satis�ed.

Several other authors have added varying degrees of intelligence to Gode and Sunder's

\zero-intelligence" (ZI) traders by restricting the range of bids and asks that they generate.

Usually these restrictions involve some function of recently observed trades or quotes. Two

examples are Jamal & Sunder (1996) and Cli� & Bruten (1997); both implement simple

heuristics to try to limit and improve on simple random bidding.

Additional examples of trading algorithms for the simple double auction can be found in

the report on the Santa Fe Institute Double Auction Tournament by Rust, Miller & Palmer

(1992). This tournament focuses on the relative performance of various strategies played

against each other. One of its key �ndings is that a very simple \parasite" strategy that

feeds o� the others performs best.

Finally, more complex computer-simulated asset markets that emphasize the evolution

of trading behavior over time have also been created. LeBaron (forthcoming 1999) surveys

many of these computational markets.4 These simulations attempt to capture long-range

market phenomenon as well as short-range trading dynamics, and share our emphasis of

building behavioral theories starting at the individual level.

4Examples include Routledge (1994, 1999), Arifovic (1996), Arthur, Holland, LeBaron, Palmer & Tayler

(1997), Lettau (1997), Youssefmir & Huberman (1997).
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3 Experimental Design

Our experimental design consists of four components: the overall market structure and eco-

nomic environment, the trading mechanism, the types of traders, and the learning algorithms

that each type of trader employs. We describe each of these components in Sections 3.1{3.4,

respectively.

3.1 Market Structure and Economic Environment

The general structure of our simulations is a double-auction market in which AI-agents

trade a single security that pays a single liquidating state-contingent dividend at the end

of a trading period by submitting orders for the security during the trading period. Each

trading period consists of 40 trading intervals, and although the security pays no dividends

until the last interval, trading occurs and information is revealed through prices and order


ow in each interval. An epoch is de�ned to be a sequence of 75 consecutive trading periods,

where an independently and identically distributed (IID) draw of the state of nature and

private information is realized in each period. The state of nature is IID across periods and

all the traders' endowments are reset at the start of each period, but the traders become

more \experienced" as they learn from one period to the next.5 Each of the six experiments

we conduct (see Section 4) consists of 100 trials of an epoch, where each epoch begins with

the same initial conditions (types of traders, wealth distribution, etc.). This experimental

design is summarized in Table 1.

At the start of a period, three quantities are initialized (but not necesarily revealed): (1)

the state of nature; (2) the agents' endowments of cash and stock, which is identical across

all agents throughout our experiments; and (3) the private information of each agent. At the

end of a period, the predetermined state of nature is revealed and dividends are distributed

to the shareholders.

The state of nature is random and exogenously determined, and the underlying distribu-

tion of the state is common knowledge. For simplicity, we assume it is discrete and uniform.

For example, in an economy with three states, each state has probability 1=3 of occurring.

5This, of course, applies only to those agents endowed with learning heuristics, e.g., empirical Bayesian

and nearest-neighbor traders. See Section 3.4 for details.
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We denote by D = (0; 1; 2) a stock that pays a dividend of 0 in state 1, 1 in state 2, and 2

in state 3.

To model traders with homogeneous preferences, we assume that a security pays the same

D regardless of who holds it. In contrast, to model traders with heterogeneous preferences,

we assume that a security pays a di�erent vector of dividends to di�erent holders of the

security. For example, in a market with two types of agents A and B, suppose the same

security pays A a dividend of Da = (0; 1; 2), but pays B a dividend of Db = (2; 0; 1). This

is a convenient device for capturing the fact that A may value a payo� in a particular

state of nature more highly than B (in this example, A values a payo� in state 3 twice as

highly as B). In economic terms, these agent-dependent payo�s may be viewed as marginal-

utility-weighted payo�s (agents with di�erent preferences will value identical dollar-payo�s

di�erently). Heterogeneous preferences (payo�s) will be one motivation for trade in our

market.

Di�erences in information about the likely state of nature is the other motive for trade.

Information that is available to all market participants is public information, whereas infor-

mation only known to some individuals is considered private information. The support of

the distribution of dividends and their unconditional probabilities are public information,

but some traders receive private information about the state of the nature. Speci�cally,

traders are categorized into three groups according to their information: insiders know ex-

actly which state will occur (for example, state 2 will occur, hence D = (�; 1;�)), partially

informed traders who have imperfect information about the state (for example, state 3 will

not occur, hence D = (0; 1;�)), and uninformed traders who have only public information

(that is, D = (0; 1; 2)). Insiders and partially informed traders receive their private informa-

tion at the beginning of each period. The distribution of private information is not common

knowledge.

3.2 Trading Mechanism

The trading mechanism is a simpli�ed double-auction market. Agents can either submit

a bid or ask, or accept a posted bid or ask. If there is an existing bid for the stock, any

subsequent bid must be higher than the current bid to be posted. Similarly, a subsequent
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ask following an existing ask must be lower than the current ask to be posted. A transaction

occurs when an existing bid or ask is accepted (a market order matches with a limit order),

or when the bid and ask cross (in which case the transaction price is set at the middle of the

bid and ask).

For each trade, we restrict the quantity traded to be one share. There are two reasons for

such a substantial simpli�cation. First, allowing variable quantities complicates the analysis

considerably, creating another strategic choice for which heuristics must be developed and

then analyzed. Second, because one of the goals of our paper is to determine the minimal level

of intelligence required to replicate certain features of more sophisticated human markets,

we wish to keep our model as simple as possible while retaining the most essential features of

a securities market, e.g., prices as a medium of information dissemination and aggregation.

However, we recognize the importance of quantity as a choice variable|it is intimately

associated with risk aversion, for example|and we hope to extend our analysis to incorporate

variable shares traded in the near future.

No borrowing or short selling is permitted, and agents must satisfy their budget con-

straint at all times. Recall that each trading period consists of 40 trading intervals. At the

beginning of each interval, a speci�c ordering of all the agents is drawn at random (uni-

formly). Following this randomly selected ordering, each agent submits one limit or market

order. We �x the number of agents to be 20 for most of the experiments,6 hence a maximum

of 20� 40 = 800 transactions can occur in any given period in such cases.

3.3 Agents

In designing our agents, we follow the spirit Gode and Sunder's (1993) \zero-intelligence" (ZI)

traders by using the simplest heuristics to give us a sense of the lower bound of intelligence

needed to replicate various human-market phenomena. This simplicity also allows us to

analyze more easily the interactions among agents and how information is disseminated and

aggregated.

Speci�cally, all traders are assumed to be risk neutral, and they maximize their end-of-

6In Experiment 4.6 we hold �xed the number of traders of one type while increasing the number of traders

of another type.
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period expected wealth by choosing between cash and stock. Agents maximize the end-of-

period expected value of their portfolios by forecasting the liquidating dividend, and then

buying when market prices are low relative to their forecast and selling when market prices

are high. Although we do not explicitly model the utility functions of the agents, we do allow

for some basic di�erences in preferences by allowing the dividend payments to di�er across

agents (see Section 3.1). All agents submit orders according to the procedure described in

Table 2 but they di�er in how they determine the expected value of the stock p�, which we

call the base price.7 For example, if there exists only an ask (no outstanding bid) and the

agent's base price is lower than the ask price, the agent posts a bid price that is uniformly

distributed on the interval (p��S; p�), where p� is the base price and S is a preset maximum

spread.

Agents are of three possible types, depending on how they construct their forecasts:

empirical Bayesian traders, momentum traders, and nearest-neighbor traders. Empirical

Bayesian traders use market information to update their beliefs about the state of the econ-

omy.8 They form their base price using these beliefs, and attempt to buy (sell) if the base

price is higher (lower) than the market price, in which case the stock is under-valued (over-

valued) from their perspective. Empirical Bayesian traders continuously observe market

activities, update their beliefs, and adjust their positions accordingly. They stop trading

when either the market price approaches their base price, or they run out of cash or stock.

Momentum traders are simple technical analysis traders whose forecast of tomorrow's

return is today's return. Speci�cally, if at time t the two most recent transaction prices

are pt and pt�1, then a momentum trader's forecast of the next transaction price is simply

pt � (pt=pt�1). These traders reinforce and magnify the ups and downs of price movements,

introducing extra volatility and irrational valuations of the security which make information

aggregation and dissemination more di�cult.

Nearest-neighbor traders attempt to exploit any patterns in historical prices to predict

7This procedure is inspired by the budget constrained ZI traders of Gode & Sunder (1993). It is also

closely related to the heuristic trader mechanisms of Jamal & Sunder (1996) and Cli� & Bruten (1997), both

of which suggest other methods for updating 
oor and ceiling levels which help to constrain bid and ask

ranges.
8We use the term \empirical Bayesian" loosely|our traders will not actually be correctly updating their

priors using all available time series data since this would be too complicated. They simplify past prices

using a moving average and this is used as a proxy for the complete history of observed data, which is then

used to update their priors.
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market prices by using a nearest-neighbor learning heuristic (see Section 3.4). If the empirical

Bayesian traders are the \fundamental investors" of the market, the nearest-neighbor traders

can be viewed as sophisticated \technicians". Like the momentum traders, nearest-neighbor

traders ignore any information regarding dividends and their associated probabilities. But

instead of following a �xed strategy, they learn and adapt to changing market conditions.

3.4 Learning Mechanism

Empirical Bayesian traders condition their beliefs on market information. Speci�cally, the

agents want to compute the expected dividend E[Djp0; p1; : : : ; pt]. For simplicity, we only

consider transaction prices and ignore other market variables such as bid/ask prices and

spreads and volume. We also assume that most of the relevant information is embedded in

the transaction prices of the last k trades, hence a k-period moving average of prices mt is

used to summarize market information at time t,

mt =
1

k

tX

�=t�k+1

p� : (3.1)

We set k = 10 in our simulations. Given the series of moving-average pricesmk; mk+1; : : : ; mt

and the realized dividend Di, the conditional distribution P(mjDi) can be estimated empir-

ically, and using Bayes Theorem, P(Dijm) can be determined:

P(Dijm) =
P(mjDi)P(Di)P

N

j=1 P(mjDj)P(Dj)
(3.2)

where P(Di) is the prior probability of dividend state i given by a trader's private information

set, and N is the number of possible states. Consequently, for D = (D0; D1; : : : ; Dn) and

given a moving-average price m, the conditional expectation of the dividend is

E[Djm] =
NX

i=1

P(Dijm)Di (3.3)

This conditional expectation is taken as the base price p� for the empirical Bayesian traders.

The order submission procedure, described in Table 2, is then followed.
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In the actual implementation, the empirical Bayesian traders estimate the conditional

density functions by constructing histograms with series of moving-average prices. Each

histogram corresponds to a dividend state. A series is appended and the corresponding his-

togram is updated with the new moving-average prices after each period of an experiment.

By participating in more periods, the empirical Bayesian traders attain more accurate es-

timates of the conditional probability. Intuitively, the empirical Bayesian traders learn the

state by associating relevant market conditions with the realized state. They memorize these

associations in form of histograms. These histograms give a picture of how well the agents

discern di�erent states given market data.

As for the nearest-neighbor traders, instead of observing the k-period moving-average

prices, in each period i they form a sequence of n-tuples from the price series: xi

n
;xi

n+1; : : : ;x
i

Ti

where:

xt = (pt�n+1; pt�n+2; : : : ; pt) ; t = k; k + 1; : : : ; T ; (3.4)

pt is the market at time t, and Ti is the number of transactions in the period. Similar to

the empirical Bayesians, the nearest-neighbor traders believe that all relevant information is

embedded in the prices of the last n transactions. We set n = 5 in our experiments. Each of

the n-tuples, xi

t
, is associated with the end-of-period REE price, or dividend Di, depending

on the state of the economy. The pairs (xi

n
; Di); (x

i

n+1; Di); : : : ; (x
i

Ti
; Di); (x

i+1
n

; Di+1); : : : and

so on represent the \memory" of a nearest-neighbor trader. The nearest-neighbor traders

predict the dividend by �rst observing the most recent n-tuple in the current market, x
j

t , then

�nding its r nearest neighbors in terms of Euclidean distance from memory. The forecast is

de�ned to be the mean of the associated dividends of the r nearest neighbors.

The parameter r controls the robustness of the prediction by governing the trade-o�

between bias and variance of the estimate. If r is too large, the bias becomes large and the

estimate is inaccurate. If r is too small, the variance is high and the estimate is noisy and

sensitive to individual data points. Through simple trial-and-error, we settled on r = 10 as

the best compromise between mean-squared-error and computational speed, but no formal

optimization was performed.
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4 Six Experiments

We conduct six distinct experiments, each consisting of 100 trials of an epoch (recall that

an epoch is comprised of 75 consecutive trading periods). The market and information

structures are identical across the six experiments, but we vary the composition of traders

and the diversity of preferences. These di�erences are described in Sections 4.1{4.6 and

summarized in Table 1. In all six experiments, we assume that there are three states of

nature that occur with equal probability (unconditionally), and unless indicated otherwise,

all agents begin each period with 10 units of cash and 5 shares of stock.

4.1 Information Aggregation and Identical Preferences

This experiment contains 20 agents with identical preferences (hence the dividend payo� D

is the same for each agent) and all agents are partially informed that one of the three states

is impossible. For example, if state 1 is the state that will be realized at the end of the

period, at the beginning of the period one trader is informed that state 0 will not occur, and

another trader is informed that state 2 will not occur. Although none of the traders knows in

advance which state will occur, collectively, the market has perfect information about which

state will occur. The REE price is simply the value of D in the realized state of nature, and

the dividend payo� is D = (0; 1; 2).

4.2 Information Dissemination and Identical Preferences

This experiment contains 20 agents with identical preferences, but there are 10 insiders

who know what the state of nature is, and 10 uninformed traders who have only public

information, i.e., the distribution of D. The REE price is D in the realized state, and the

dividend payo� is D = (0; 1; 3).
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4.3 Information Aggregation and Heterogenous Preferences

This experiment contains 20 agents divided into two groups of 10 according to their prefer-

ences. In the three possible states of nature, Group A receives a dividend Da = (0; 1; 3) and

Group B receives Db = (2; 0; 1). All traders have private information which rules out one of

the two states that will not occur. Given the state of nature, the REE price is the higher

of Da and Db in that particular state. For example, given that state 2 will occur, the REE

price is 3.

We run this experiment twice. In the �rst run, we set agents' endowments at the usual

levels: 10 units of cash and 5 shares of stock. In the second run, we increase each agent's

cash endowment to 40 units, relaxing budget constraints considerably.

4.4 Information Dissemination and Heterogenous Preferences

There are two groups of traders with diverse preferences. Group A receives dividend Da =

(0; 1; 3) and group B receives Db = (2; 0; 1). There are 5 insiders and 5 uninformed traders

in groups A and B, respectively. The REE price is the higher of Da and Db given the state.

As in Experiment 4.3, we run this experiment twice. In the �rst run, we set agents'

endowments at the usual levels: 10 units of cash and 5 shares of stock. In the second run, we

increase each agent's cash endowment to 40 units, relaxing budget constraints considerably.

4.5 Empirical Bayesian and Momentum Traders

In this experiment we test the robustness of our market's price-discovery mechanism by

varying the proportion of empirical Bayesian and momentum traders in the population.

The empirical Bayesian traders provide the market with information and, by their trading

activities, move market prices towards the REE. The momentum traders, on the other hand,

introduce a substantial amount of noise and volatility into market prices. How much noise

can the market \tolerate" before the price-discovery mechanism breaks down, i.e., prices no

longer converge to the REE?

To answer this question, we �x the number of empirical Bayesian traders at 20 and
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perform a sequence of 14 experiments in which the number of momentum traders is increased

incrementally from 0 in the �rst run to 150 in the 14th run.9 By maintaining the same

number of empirical Bayesian traders across these 14 runs, we keep constant the amount

information in the market while successively increasing the amount of noise induced by

momentum traders.

4.6 Empirical Bayesian and Nearest-Neighbor Traders

In this experiment we have 15 empirical Bayesian traders and 5 nearest-neighbor traders.

The nearest-neighbor traders are designed to exploit any predictability in prices, hence their

trading performance is a measure of the market's weak-form e�ciency. If the market is

weak-form e�cient, then the empirical Bayesian traders should perform at least as well as

the nearest-neighbor traders (because there is nothing for the \technicians" to pick up).

On the other hand, if prices contain predictable components, the nearest-neighbor traders

should outperform the empirical Bayesians.

5 Results and Discussion

In all six experiments, we focus on the informational e�ciency of the market, i.e., do \prices

fully re
ect all available information"? Speci�cally, we compare market prices to their REE

counterpart by measuring their average absolute price-deviation:

�p =
1

T

TX

t=1

jpt � Dj (5.1)

where pt is the transaction price and D is the REE price, and by considering the rate of

convergence of pt to D over the epoch.

In addition, we investigate bid-ask spreads, trading volume, and the wealth distribution

across the di�erent types of traders. Narrowing bid-ask spreads show that prices are con-

9 Speci�cally, the 14 runs correspond to experiments with 0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125,

and 150 momentum traders, respectively.
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verging, implying that buyers and sellers are reaching a common price. Diminishing volume,

on the other hand, suggests that the market is approaching its equilibrium. This is either

because all traders come to the same expected price and therefore have no incentives to

trade, or they simply run out of cash or stock to transact further. And the di�erence in

wealth between two types of traders provides an indication of the economic impact of the

di�erences among the traders. For example, in the case of insiders versus uninformed traders

(Experiment 4.2), the di�erences in wealth between the two groups provide a measure of the

value of insider information. We measure this di�erence as �w(i; j) where

�w(i; j) �

Wi � Wj

Wj

� 100 (5.2)

and Wi and Wj are the total wealth levels of the two types of traders.

We also investigate the expectations formed by the agents by examining their empirical

conditional density functions of the moving-average price given the states. This collection of

conditional density functions represents the agents' beliefs formed with their prior informa-

tion and updated continuously with market prices. The agents use these density functions

to distinguish one state from another, hence these functions are central to understanding

how the agents learn.

In experiments that have a diverse dividend structure, we de�ne allocative e�ciency,

following Smith (1962), as the ratio between total dividends earned by all traders and the

total maximum dividends that can possibly be extracted from the market. For example,

100% allocative e�ciency implies that all shares are held by traders in the group that receives

the highest dividend in the realized state. The REE predicts 100% allocative e�ciency in

that all shares will be allocated to the traders valuing them most highly.

Recall that each experiment consists of 100 trials of an epoch consisting of 75 consecutive

trading periods, and a trading period contains 40 trading intervals. Because of the enormous

quantity of data generated from these simulations, it is di�cult to provide numerical sum-

maries of the results. Therefore, we summarize our �ndings in a series of graphs (Figures

2a{7b) and discuss them in Sections 5.1{5.4.
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5.1 Homogeneous Preferences

With identical preferences, the results from our simulation are similar to those in the human-

based experimental markets literature, and are captured in Figures 2a and 2b which plot

the transaction, bid, and ask prices and volume in selected periods of a typical epoch of

Experiment 4.1.

In this experiment the convergence to the REE is apparent. Figure 2a shows market

activities in the earlier periods of the market in a typical trial of the experiment. In this stage,

agents are actively learning and observing, with little evidence of convergence. However,

in the later periods (see Figure 2b), after agents have accumulated su�cient knowledge

regarding how states and prices are related, convergence becomes more apparent.

Figure 2c plots the average price-deviations �p (see (5.1)) for each of the 75 periods of

the epoch, averaged over the 100 trials of the experiment. Market e�ciency clearly improves

substantially over the epoch. Figure 2d plots the conditional distribution of the moving-

average price (see (3.1)) for each of the three states, obtained by summing up the frequency

counts for mt across the 100 trials and for each state. These histograms show that the three

states are clearly distinguishable by the agents.

In Experiment 4.2, the evidence of convergence is even more compelling (see Figures

3a and 3b). In contrast to Experiment 4.1, prices converge faster in this experiment and

are closer to the REE price (Figure 3c), and bid-ask spreads are smaller. There are two

reasons for such a di�erence in the two experiments, despite the fact that both markets

have approximately the same amount of information. First, in Experiment 4.1 traders must

trade with each other to \pool" their information to determine the correct price, whereas

in Experiment 4.2 the insiders know the correct price. Second, in the former case the

distribution of information to the traders is random. For example, there may be many more

traders given the information D = (0; 1;�) than those given D = (�; 1; 3), biasing the

consensus in one direction or another.

Figure 3e plots the cross-sectional distribution of percentage wealth di�erences �w (see

(5.2)) between the informed and uninformed traders for the 75 trading periods. For each

period, we compute the average wealth within the two groups, take the percentage di�erence,

and plot the deciles of these di�erences over the 100 trials. Not surprisingly, insiders have a
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substantially higher wealth than the uninformed. The di�erence in their wealth represents

the value of the insider information and may be an estimate of the price traders would be

willing to pay if information signals were sold. Observe that the value of insider information

is diminishing over the epoch as uninformed traders learn. This is consistent with results

from human-based experimental markets such as Sunder (1992) in which information is sold

in a sealed bid auction. In such experimental markets, traders lower their bids for information

once they learn to infer the states after a few periods of experience.

5.2 Heterogeneous Preferences

In contrast to the identical-preference cases, the prices in experiments involving diverse

preferences do not seem to converge to the REE price. This can be explained by the fact

that our agents attempt to recover the state of nature from market information alone, and

not from the preferences of other agents (which is not common knowledge), despite the fact

that heterogeneity is an important feature of their world. In fact, they are not even \aware"

of the possibility of di�erences in dividend payo�s across traders.

Figures 4a{5e summarize the results from Experiments 4.3 and 4.4. Because our agents

must infer the state of nature from market prices alone, we expect the REE model to fail in

both experiments. The intuition for this conjecture comes from the fact that market prices

are less useful for discriminating among states of nature in the presence of heterogeneity.

For example, Figure 5e plots the conditional distribution of the moving-average price in

Experiment 4.4; the probability of such a realization is almost identical in states 1 and 2,

making the two virtually indistinguishable. Even if agents were told which state will occur,

they would still have trouble reaching a unanimous price because of the heterogeneity in

their preferences.

However, the degree of market e�ciency|as measured by the average absolute price-

deviation and allocative e�ciency|is in
uenced by the traders' initial cash endowments.

The outcomes of two experiments, a low-cash (10 units) and a high-cash (40 units) exper-

iment, are summarized in Figures 4c and 4d. These �gures plot average absolute price-

deviations and allocative e�ciency, respectively, for the two experiments over the 75 periods

of an epoch and averaged over 100 trials. Figure 4c shows that the standard cash endowment
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of 10 units does not lead to convergence; average absolute price-deviations and allocative

e�ciencies do not improve much over the 75 periods. However, an initial cash endowment

of 40 units does yield some convergence in Experiments 4.3 and 4.4.

A concrete example will help to illustrate how the market reaches equilibrium in the high-

cash case. In Experiment 4.3, type A and type B insiders will receive 3 and 1, respectively,

for one share of the stock in state 3. These are their reservation prices. Agents will not

buy above or sell below these prices. Between the two groups of insiders, it is only possible

for type B to buy from type A. The uninformed agents, without any private information,

will have a reservation price approximately equal to 1 regardless of their dividend pro�le.10

Hence, we can conjecture that the transaction prices will range from 1 to 3. Note that type

B insiders will bid the highest price|close to 3|and they will never sell the shares. The

rest will attempt to buy or sell at roughly 1 but type B insiders will be responsible for most

of the buying. Consequently supply diminishes and the price converges gradually to 2.

Not surprisingly, we also observe close to 100% allocative e�ciency in the high-cash

experiment as Figure 4d shows. However, the large bid-ask spreads displayed in Figure 4b

imply that many traders are still interested in trading at prices far from the REE price, and

there is little improvement in this spread across the periods.

Information dissemination in a market with diverse dividends (Experiment 4.4) is unsuc-

cessful by our learning agents. This contrasts sharply with the human-based experimental

markets studied by Plott and Sunder (1982), where after a few trials, insiders begin to realize

that the equilibrium price can be di�erent from what their dividend pro�les imply, and they

adjust their trading strategy accordingly. Uninformed human traders are also able infer the

equilibrium price from market conditions. The key distinctions between these experimental

markets and our simulations are human traders' knowledge of the existence of heterogeneous

preferences (diverse dividend payo�s), and their ability to learn the relation between the

equilibrium price and the state of nature.

In the market of diverse information and heterogeneous preferences (Experiment 4.3),

the end-of-period price does not come close to the REE price. We recognize that a market

with diverse information is a more di�cult scenario than one with insider information. In

10This is approximate because their beliefs, conditioned on the market prices, can a�ect their estimates of

the price.
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similar experiments with human subjects, Plott and Sunder (1988) show that information

aggregation was unsuccessful in a market with heterogeneous preferences, and they attributed

the failure to the complexity involved to inferring the state from market information. In two

other sets of experiments, they found that the market aggregates information e�ciently by

having identical dividends across all traders (as in Experiment 4.1), or by replacing the

single three-state security with three state-contingent claims. In a separate study, Forsythe

& Lundholm (1990) con�rmed similar results and added that information aggregation can be

successful if the information about the heterogeneity in dividend payo�s is made available to

all traders. Nevertheless, here our empirical Bayesian traders fail to aggregate information

for the same reasons as they fail to disseminate information in Experiment 4.4.

5.3 Momentum Traders

In Experiment 4.5, we add momentum traders to the market to introduce extra noise and

volatility to the \signal" perceived by the partially informed empirical Bayesian traders. To

quantify the e�ect that momentum traders have on the market, we plot in Figure 6a the

average absolute price-deviations in periods 30, 40, 50, and 75, each averaged over 100 trials

for each of 14 di�erent runs of this experiment, each run corresponding to a di�erent number

of momentum traders, from 0 in run 1 to 150 in run 14 (the number of empirical Bayesian

traders is �xed at 20 for all runs).11 As expected, the absolute price-deviation curve is

highest for the period-30 plot and lowest for the period-75 plot|the market becomes more

e�cient over time as agents learn.

Figure 6a also shows that in all four periods, the absolute price-deviations decrease

initially as momentum traders are introduced, but generally increase after the number of

momentum traders exceeds 5. Momentum traders add not only noise but also liquidity

to the market, and with a small population of these irrational agents in the market, the

empirical Bayesians manage to take advantage of the additional liquidity in making the

market more e�cient. However, when the number of momentum traders reaches 25 or more,

the average price-deviation exceeds that of the benchmark case where no momentum traders

are present.

11See footnote 9.
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Figure 6b provides a more detailed look at the impact of momentum traders on market

prices through plots of the average absolute price-deviation over three di�erent runs of Ex-

periment 4.5: runs with 0, 25, and 50 momentum traders (each plot is the average over 100

trials). Not surprisingly, the average absolute price-deviations increase with the number of

momentum traders. The irrational trading of the momentum traders adversely a�ects the

price convergence at early stage of the markets (roughly from periods 1 to 40). However,

as the empirical Bayesian traders learn from and adapt to the strategies of the momentum

traders, they are eventually able to overcome the noise from the irrational trading. From

periods 65 to 75, the three markets are about equally e�cient as measured by price devia-

tion. Both the learning of the empirical Bayesian traders and the liquidity provided by the

momentum traders contribute to e�ciency of the markets.

Figure 6c plots the empirical conditional distributions of the moving-average prices in an

experiment with 20 empirical Bayesians and 20 momentum traders. Despite the fact that

these distributions have high dispersion, the three states are still distinguishable. In such

circumstances, we expect the empirical Bayesians to exploit the irrational momentum traders

and end up with a much higher level of end-of-period wealth. After all, the farther the price

deviates from the RE price, the higher is the gain of the empirical Bayesians. However,

Figure 6d shows that this intuition is not complete. Although median wealth di�erences

between empirical Bayesian and momentum traders increase initially (from periods 1 to 5),

they generally decline afterwards. The initial increase can be attributed to the empirical

Bayesians' learning about the in
uence of momentum traders. But after some point, the

market becomes more e�cient, i.e., prices become more informative and closer to the REE.

This is consistent with the patterns documented in Figure 6b|the initial advantages of the

empirical Bayesians diminish through time as pro�t opportunities are bid away.

5.4 Nearest-Neighbor Traders

In the previous experiments, we have shown that the empirical Bayesian traders are successful

in disseminating and aggregating information in homogeneous-preferences cases. However,

we have not investigated the weak-form e�ciency of these markets, i.e., how predictable are

price changes? In Experiment 4.6, the empirical Bayesian traders are combined with nearest-
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neighbor traders, traders that attempt to uncover and exploit predictabilities in past prices.

Our hypothesis is that if market prices are informationally e�cient and do fully reveal all

available information, then nearest-neighbor traders will perform poorly against empirical

Bayesians.

Figure 7a shows the price convergence of this market. The price deviations reach the

same levels as those in Experiment 4.1, converging rapidly after 50 periods.12 Unlike mo-

mentum traders, nearest-neighbor traders do not appear to hinder the process of information

aggregation.

With respect to the relative performance of the two types of traders, Figure 7b shows

that in terms of median percentage wealth di�erences, nearest-neighbor traders outperform

empirical Bayesian traders in all but the �rst 4 periods, implying that market prices do

have some predictability to be exploited. In fact, the nearest-neighbor traders signi�cantly

outperform the empirical Bayesians roughly from period 5 to 40, after which the median

wealth di�erence between the two groups becomes less signi�cant.

This suggests that the predictability in prices is temporary (but more than just a few

periods), and that nearest-neighbor traders learn faster than the empirical Bayesians. The

�rst implication is consistent with our observation of the decreasing price deviations (in

Figure 7a), or equivalently increasing price e�ciency, from periods 1 to 40. Nearest-neighbor

traders help make the market more e�cient.

With respect to the second implication, the two types of traders start learning at the same

time and compete with each other to discover the REE price. Evidently, the nearest-neighbor

traders are able to exploit predictabilities more quickly hence they outperform empirical

Bayesians initially. Eventually, empirical Bayesians are able to adapt to the strategy of

the nearest-neighbor traders and more accurately infer the state of nature from market data.

Consequently, as price becomes more e�cient, the advantage enjoyed by the nearest-neighbor

traders diminishes. However, the distribution of wealth di�erences (Figure 7b) show that

even in the later periods, there are some realizations in which nearest-neighbor traders exhibit

small gains over empirical Bayesians. These gains are not caused by price ine�ciency, but are

due to the fact that empirical Bayesians trade on rather inaccurate unconditional expected

12For this experiment, we extend the epoch to include 100 periods to ensure that prices were converging

to the REE instead of cycling.
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dividend at the beginning of each period.13

6 Conclusions

The rich implications of our agent-based model of �nancial markets underscore the potential

for this new approach to shed light on challenging �nancial issues that currently cannot be

addressed in any other way. Our simulation results accord well with human-based experimen-

tal market studies in many cases. Our simple AI-agents can accurately infer and aggregate

diverse pieces of information in many circumstances, and they have di�culties in cases where

human traders are also unable to determine the rational expectations equilibrium.

In a small number of cases our markets behave di�erently from human-based experimen-

tal markets. In our view, these discrepancies are just as signi�cant as the concordances.

For example, the sharp contradiction between Plott and Sunder (1982) and our experimen-

tal results in the case of information dissemination under heterogeneous preferences points

to several important issues that warrant further investigation (more sophisticated learning

algorithms for our agents, non-price learning and communication by human subjects, the

dynamics created by heterogeneous preferences, etc.).

The use of AI-agents with simple heuristic trading rules and learning algorithms allows

us to perform many new experiments that are well beyond the capabilities of experimental

markets with human subjects. For example, we show that adding momentum traders to a

population of empirical Bayesians has an adverse impact on market performance and the

momentum traders do poorly overall. However, this e�ect diminishes over time as the market

becomes more e�cient. But in our �nal experiments in which nearest-neighbor traders|

traders that simply trade on patterns in past prices|are added to a population of empirical

Bayesians, they are relatively successful free riders, not only matching the performance of

empirical Bayesians in the long run, but outperforming the Bayesians in the short run. We

conjecture that this advantage comes from the nearest-neighbor traders' ability to exploit

13Recall from Section 3.4, empirical Bayesian traders compute their expected dividend condition on a k-

period moving average price mt. At the beginning of each period, before k prices are available, they simply

trade on unconditional expected dividend.
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short-term predictabilities more e�ciently (that is what they are designed to do), and such

predictabilities are more readily available in the early periods of trading.14 These �ndings

raise interesting possibilities when viewed from an evolutionary point of view. In the early

periods, selective pressures favor the nearest-neighbor traders, not the empirical Bayesian.

If enough free riders enter the market, then prices might fail to converge to the rational

expectations price because the market will contain too many free riders hoping to learn from

price patterns alone.

Agent-based models are also ideally suited to address some of the most challenging issues

in market microstructure: What are the relative merits of a monopolistic marketmaker versus

multiple dealers? What are the likely e�ects of decimalization on the bid-ask spreads and

volume? Do \circuit breakers" ameliorate or exacerbate market volatility? How do we de�ne

\liquidity"? And what are the social-welfare implications of the growing number of ECN's

and the corresponding fragmentation that they create? Although each of these issues has

been subjected to theoretical and empirical scrutiny, the complexities of the interactions

among market participants and institutional structure are so great that very few practical

implications can be expected from such studies. Agent-based models provide a natural

alternative, and we plan to explore these issues more fully in future research.

Our paper is a growing research program in which computer-simulated market interac-

tions of AI-agents are yielding many insights into complex issues such as learning dynamics,

the evolution of market structure, and the nature of human intelligence in an economic

context. We hope to have provided a bridge between ad hoc learning models and market ex-

periments with human subjects.15 Placing AI-agents into a well-de�ned market environment

imposes a certain discipline upon the experimenter to be precise about learning algorithms

and behavioral heuristics. Moreover, the results of such simulations may suggest hypotheses

for human subjects that can then be taken into the laboratory for empirical validation.

Future agent-based simulations need not be restricted to AI-agents. We believe that

there are many interesting experiments to be performed with human and software agents

combined, and these \mixed" experiments may provide new methods for exploring the na-

ture of human cognition in economic settings. Indeed, one can imagine a �nancial \Turing

14These results are closely related to parasite strategies documented in Rust et al. (1992).
15Other papers that have already blazed this trail are Andreoni and Miller (1995) and Arifovic (1996).
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Test" in which human traders are asked to distinguish between human and electronic coun-

terparties based solely on their trading patterns. With the recent plethora of electronic

day-trading companies and corresponding technologies, we may soon see AI-agents acting

as broker/dealers for human clients, hence an agent-based modeling approach to �nancial

markets may have practical implications as well.
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Experiment
Information Preferences

Dividend
Endowment Number of Traders

Number Payo�
Cash Stock E.B. Mom. N.N.

1 Aggregation Homogeneous (0; 1; 2) 10 5 20 0 0

2 Dissemination Homogeneous (0; 1; 2) 10 5 20 0 0

3a Aggregation Heterogeneous (0; 1; 3)a 10 5 10 0 0

(2; 0; 1)b 10

3b Aggregation Heterogeneous (0; 1; 3)a 40 5 10 0 0

(2; 0; 1)b 10

4a Dissemination Heterogeneous (0; 1; 3)a 10 5 10 0 0

(2; 0; 1)b 10

4b Dissemination Heterogeneous (0; 1; 3)a 40 5 10 0 0

(2; 0; 1)b 10

5 Aggregation Homogeneous (0; 1; 2) 10 5 20 0; : : : ; 150 0

6 Aggregation Homogeneous (0; 1; 2) 10 5 15 0 5

Table 1: Summary of the six experiments conducted in the Arti�cial Markets simulations. `E.B.',

`Mom.', and `N.N.' denote the number of Empirical Bayesian, momentum, and nearest-neighbor

traders in each experiment. Each experiment consists of 100 statistically independent repetitions

of 75 trading periods.
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Scenario Action

existing bid, existing ask

p� > a buy at market

p� < b sell at market

b < p� < a and a�p� > p��b post an ask distributed U(p�; p�+S)

b < p� < a and a�p� � p��b post a bid distributed U(p��S; p�)

no bid, existing ask

p� > a buy at market

p� � a post a bid distributed U(p��S; p�)

existing bid, no ask

p� < b sell at market

p� � b post an ask distributed U(p�; p�+S)

no bid, no ask

with probability 1=2 post an ask distributed U(p�; p�+S)

with probability 1=2 post a bid distributed U(p��S; p�)

Table 2: The order-submission algorithm of AI-agents in the Arti�cial Markets simulations, where

a denotes the best ask price, b the best bid price, p� the agent's base price, S the maximum spread

from the base price, and U(x1; x2) the uniform distribution on the open interval from x1 to x2.
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AUCTIONEER

ALL TRADERS

End of a Period

Generate an
Order

a market/limit
    order

market
information

a trader is randomly
drawn without
replacement

A Typical Trading Interval

Trading Interval 1 Trading Interval 2 Trading Interval 40

A Typical Period

End of an EpochBeginning of
an Epoch

Beginning of
a Period

Period 1 Period 2 Period 75

Figure 1: The experimental design of the Arti�cial Markets simulations. An epoch consists of 75

trading periods, and each period contains 40 trading intervals.
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Figure 2a: Prices, bid-ask spreads, and volume in the early periods of a typical realization of

Arti�cial Markets Experiment 4.1 (information aggregation with identical preferences).
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Figure 2b: Prices, bid-ask spreads, and volume in the later periods of a typical realization of

Arti�cial Markets Experiment 4.1 (information aggregation with identical preferences).
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Figure 2c: Absolute price-deviations of market prices from the rational expectations equilibrium

price, averaged over 100 repetitions of Arti�cial Markets Experiment 4.1 (information aggregation

with identical preferences).
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Figure 2d: Empirical distribution of moving-average prices, conditioned on the state of nature S,

in Arti�cial Markets Experiment 4.1 (information aggregation with identical preferences).
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Figure 3a: Prices, bid-ask spreads, and volume in the early periods of a typical realization of

Arti�cial Markets Experiment 4.2 (information dissemination with identical preferences).
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Figure 3b: Prices, bid-ask spreads, and volume in the later periods of a typical realization of

Arti�cial Markets Experiment 4.2 (information dissemination with identical preferences).
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Figure 3c: Absolute price-deviations of market prices from the rational expectations equilibrium

price, averaged over 100 repetitions of Arti�cial Markets Experiment 4.2 (information dissemination

with identical preferences).
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Figure 3d: Empirical distribution of moving-average prices, conditioned on the state of nature S,

in Arti�cial Markets Experiment 4.2 (information dissemination with identical preferences).
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Figure 3e: Deciles of percentage wealth di�erences between insiders and uninformed traders in 100

repetitions of Arti�cial Markets Experiment 4.2 (information dissemination with identical prefer-

ences). Medians are indicated by the symbol `+'.
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Figure 4a: Prices, bid-ask spreads, and volume in the early periods of a typical realization of

Arti�cial Markets Experiment 4.3 (information aggregation with heterogeneous preferences).
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Figure 4b: Prices, bid-ask spreads, and volume in the later periods of a typical realization of

Arti�cial Markets Experiment 4.3 (information aggregation with heterogeneous preferences).
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Figure 4c: Absolute price-deviations of market prices from the rational expectations equilibrium

price, averaged over 100 repetitions of each of two runs of Arti�cial Markets Experiment 4.3 (infor-

mation aggregation with heterogeneous preferences), the `low-cash' and `high-cash' experiments.
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Figure 4d: Allocative e�ciency, averaged over 100 repetitions of each of two runs of Arti�cial

Markets Experiment 4.3 (information aggregation with heterogeneous preferences), the `low-cash'

and `high-cash' experiments.
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Figure 4e: Empirical distribution of moving-average prices, conditioned on the state of nature S,

in Arti�cial Markets Experiment 4.3 (information aggregation with heterogeneous preferences).
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Figure 5a: Prices, bid-ask spreads, and volume in the early periods of a typical realization of

Arti�cial Markets Experiment 4.4 (information dissemination with heterogeneous preferences).
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Figure 5b: Prices, bid-ask spreads, and volume in the later periods of a typical realization of

Arti�cial Markets Experiment 4.4 (information dissemination with heterogeneous preferences).
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Figure 5c: Absolute price-deviations of market prices from the rational expectations equilibrium

price, averaged over 100 repetitions of each of two runs of Arti�cial Markets Experiment 4.4 (infor-

mation dissemination with heterogeneous preferences), the `low-cash' and `high-cash' experiments.
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Figure 5d: Allocative e�ciency, averaged over 100 repetitions of each of two runs of Arti�cial

Markets Experiment 4.4 (information dissemination with heterogeneous preferences), the `low-cash'

and `high-cash' experiments.
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Figure 5e: Empirical distribution of moving-average prices, conditioned on the state of nature S,

in Arti�cial Markets Experiment 4.4 (information dissemination with heterogeneous preferences).
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Figure 6a: Absolute price-deviations of market prices from the rational expectations equilibrium

price in periods 30, 40, 50 and 75, averaged over 100 repetitions, as a function of the number

of momentum traders present in Arti�cial Markets Experiment 4.5 (information aggregation with

empirical Bayesian and momentum traders).
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Figure 6b: Absolute price-deviations of market prices from the rational expectations equilibrium

price, averaged over 100 repetitions, over the epoch for 0, 25, and 50 momentum traders in Arti�cial

Markets Experiment 4.5 (information aggregation with empirical Bayesian and momentum traders).
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Figure 6c: Empirical distribution of moving-average prices, conditioned on the state of nature S,

in Arti�cial Markets Experiment 4.5 (information aggregation with 20 empirical Bayesian and 20

momentum traders).
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Figure 6d: Deciles of percentage wealth di�erences between empirical Bayesian and momentum

traders in 100 repetitions of Arti�cial Markets Experiment 4.5 (information aggregation with 20

empirical Bayesian and 20 momentum traders). Medians are indicated by the symbol `+'.
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Figure 7a: Absolute price-deviations of market prices from the rational expectations equilibrium

price, averaged over 100 repetitions, in Arti�cial Markets Experiment 4.6 (information aggregation

with 15 empirical Bayesian and 5 nearest-neighbor traders).
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Figure 7b: Deciles of percentage wealth di�erences between empirical Bayesian and nearest-

neighbor traders in 100 repetitions of Arti�cial Markets Experiment 4.6 (information aggregation

with 15 empirical Bayesian and 5 momentum traders). Medians are indicated by the symbol `+'.
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