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LEARNING AND ADAPTIVE ECONOMIC BEHAVIOR?

Designing Economic Agents that Act Like Human Agents:
A Behavioral Approach to Bounded Rationality

By W. BRIAN ARTHUR*

Most economists accept that there are
limits to the reasoning abilities of human
beings—that human rationality is bounded.
The question is how to model economic
choices made under these limits. Where,
between perfect rationality and its complete
absence, are we to set the “dial of rational-
ity,” and how do we build this dial setting in
to our theoretical models?

One approach to this problem is to lay
down axioms or assumptions that suppose
limits to economic agents’ computational
ability or memory, and investigate their con-
sequences. This is useful, but it begs the
question of how humans actually behave. A
different approach (the one I suggest here)
is to develop theoretical economic agents
that act and choose in the way actual hu-
mans do. We could do this by representing
agents as using parametrized decision algo-
rithms, and choose and calibrate these algo-
rithms so that the agents’ behavior matches
real human behavior observed in the same
decision context. Theoretical models using
these “calibrated agents” would then, we
could claim, furnish predictions based on
actual rather than idealized behavior.

It is unlikely there exists some yet-to-be-
defined decision algorithm, some “model of
man,” that would represent human behav-
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ior in all economic problems—an algorithm
whose parameters would constitute univer-
sal constants of human behavior. Different
contexts of decision making in the economy
call for different actions; and an algorithm
calibrated to reproduce human learning in a
search problem might differ from one that
reproduces strategic-choice behavior. We
would likely need a repertoire of calibrated
algorithms to cover the various contexts that
might arise.

Nevertheless, for a particular context of
decision making, calibrating theoretical be-
havior to match human behavior would al-
low us to ask questions that are not answer-
able at present under the assumption of
either perfect rationality or idealized learn-
ing. We might want to know whether a
given neoclassical model with human agents
represented by “calibrated agents” will re-
sult in some standard asymptotic pattern—
a rational-expectations equilibrium, say. We
might ask whether agents calibrated to learn
as humans do converge to some form of
optimality, or interactively to a Nash equi-
librium.! And we might want to study the
speed of adaptation in a particular eco-
nomic model with human agents repre-
sented by calibrated agents.

What would it mean to calibrate an algo-
rithm to “reproduce” human behavior? The
object would be algorithmic behavior that
reproduces statistically the characteristics of
human choice, including the distinctive er-
rors or departures from rationality that hu-

'Drew Fudenberg and David Kreps (1988) and Paul
Milgrom and John Roberts (1991) take a different, but
parallel approach. They show that if human learning
behavior fulfills certain axioms, asymptotic behavior
will result in standard outcomes.
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mans make, in the given context. Ideally,
the algorithm could pass a Turing test of
being indistinguishable from corresponding
human behavior in the same context, to an
observer who was not informed whether the
behavior was algorithm generated or human
generated (Alan Turing, 1956). This of
course would be asking a lot.

This paper reports on and discusses my
recent work (1990) that explores this idea of
calibrating an algorithm to reproduce hu-
man behavior. It develops and calibrates a
learning algorithm for a commonly encoun-
tered and simple decision context, that of
agents choosing repeatedly among discrete
actions with initially unknown, random con-
sequences.

I. A Parametrized Learning Automaton

Consider the problem of iterated choice
under uncertainty, in which a decision maker
chooses one of N possible actions at each
time that have random payoffs or profits
drawn from a stationary distribution that is
unknown in advance. This would be the
case, for example, where a firm, government
agency, or research department is faced each
period with a choice among N alternative
pricing schemes, or policy options, or re-
search projects, each with consequences that
are poorly understood at the outset and that
vary from “trial” to “trial’. The agent
chooses one alternative at each time, ob-
serves its consequence or payoff, and over
time updates his choice as a result. What
makes this iterated choice problem interest-
ing is the tension between exploitation of
high-payoff actions that have been under-
taken many times and are therefore well
understood, and exploration of seldom-tried
actions that potentially may have higher av-
erage payoff.

The classic multi-arm-bandit version of
this problem is to design a learning algo-
rithm or automaton that maximizes some
criterion—such as expected average payoff.
Our problem is different. It is to design a
learning algorithm or learning automaton
that can be tuned to choose actions in this
iterated choice situation the way humans
would.
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Consider then a learning automaton that
represents a single agent who can under-
take one action of N possible actions at
each time. We may think of “learning” in
this iterated-choice context as updating the
probabilities of taking each action on the
basis of the payoffs or outcomes experi-
enced. Action i brings reward ®(i) that is
unknown to the agent in advance, positive,
and distributed randomly with a stationary
distribution. The automaton (our artificial
gent) “learns” via the following simple algo-
rithm. It associates a vector of strengths, S,,
with the actions 1 through N, at each time
t. The current sum of these strengths is C,
(the component sum of §,), and the initial
strength vector S, is strictly positive. The
vector p, represents the agent’s probabili-
ties of taking actions 1 through N at time ¢.
At each time ¢, the agent:

1) Calculates the probability vector as
the relative strengths associated with each
action. That is, it sets p, =S, /C,.

2) Chooses one action from the set ac-
cording to the probabilities p, and triggers
that action.

3) Observes the payoff received and
updates strengths by adding the chosen ac-
tions’s j’s payoff to action j’s strength. That
is, where action j 1is chosen, it sets
the strengths to S, + B, where B, = ®(j)e;;
(e; is the jth unit vector).

4) Renormalizes the strengths to sum
to a value from a prechosen time sequence.
In this case, it renormalizes strengths to
sum to C, = Ct".

This last step allows us to set the rate and
deceleration of the learning via the parame-
ters C and v that are fixed in advance. The
rate of learning, it turns out, is proportional
to 1/(Ct?). Parameters C and v thus define
a two-parameter family of algorithms that
can be used to calibrate the automaton.

The algorithm has a simple behavioral
interpretation (at least when v =0). The
strength vector summarizes the current con-
fidence the agent or automaton has learned
to associate with actions 1 through N. Con-
fidence associated with an action increases
according to the (random) payoff it brings in
when taken. The automaton chooses its ac-
tion with probabilities proportional to its
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current confidence in the N actions, and
learning takes place as these probabilities of
actions are updated. The summed confi-
dence in all actions is constrained to be
constant. §,, the initial confidence in the
actions, represents prior beliefs, possibly
carried over from past experience.

It also has a machine-learning interpreta-
tion. A Holland-type classifier is a condi-
tion /action couple (“if object appears in
left vision field /turn toward object”), where
the action is allowed to be activated only if
the condition is fulfilled (John Holland et
al., 1987). If several classifiers have the same
condition and that condition is fulfilled, they
“compete” to be the one activated. Our
algorithm can be viewed as a set of N
classifiers each competing to be activated,
where classifier j is the simple couple “if it
is time to act/choose alternative j.” As is
standard in classifier systems, strengths are
associated with the classifiers; one classifier
is triggered on the basis of current strengths;
and the chosen classifier’s strength is up-
dated by the associated reward.

The algorithm is nonlinear in that actions
that are frequently taken are further
strengthened or reinforced, as in the classic
Hebb’s rule (Donald Hebb, 1949). And it is
stochastic in that actions are triggered ran-
domly on the basis of current probabilities,
and rewards are drawn randomly from a
distribution. Nonlinearity allows for the ex-
ploitation of “useful” actions—ones that
pay well tend to be strengthened early on
and therefore to be heavily emphasized. And
the stochastic property (triggering actions
randomly on the basis of their strength)
allows for exploration: if a little used action
brings in a “jackpot,” it may be strength-
ened sufficiently to become a frequent ac-
tion.

What can we say about the long-run
properties of the learning implicit in this
algorithm? Will it “discover” the maximal
expected-payoff action, k say, and learn over
time to activate it only in the limit? This is
not obvious. There are two contradictory
tendencies. On the one hand, if an inferior
high-payoff action j is triggered early, it
may gain in strength and be triggered ever
more often until it dominates. Learning may
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then fall into action j’s “gravitational orbit”
without escaping. On the other hand, if
exploration does not die away too fast, the
algorithm will eventually uncover the fact
that k is better and home in on it.

In my earlier paper (1990), I show that
the algorithm has stochastic dynamics:

(D) pea(d) = p.(0)
.l

The probability of choosing action i grows
at a rate proportional to the difference be-
tween i’s expected payoff ¢(i) and the aver-
age payoff at current probabilities, plus an
unbiased perturbation term ¢£. The step-size
a, is 1/(Ct"). Further analysis settles opti-
mality. If v <1, the step-size remains large
enough for inferior action j, emphasized
early by chance, possibly to build up suffi-
cient strength to shut k out. Optimality is in
this case not guaranteed. If, on the other
hand, v =1, optimality is guaranteed. The
step-size falls off at rate 1/¢; this delays
movement to a nonoptimal action and re-
tains exploration for a long enough time for
k to be repeatedly activated and to domi-
nate.

+04PK0

$(i) = L))

II. Calibration Against Human Subjects

We now want to calibrate the parameters
C and v against data on human learning.
Here we are interested in three things: the
degree to which the calibrated algorithm
represents human behavior; whether the
measured value of v lies within the range
that guarantees asymptotically optimal
choices; and the general characteristics of
learning (such as speed and ability to dis-
criminate) that the calibrated values imply.

To calibrate the algorithm, I use the re-
sults of a series of two-choice bandit experi-
ments conducted by Laval Robillard at Har-
vard in 1952-53 using students as subjects
(reported in Robert Bush and Frederick
Mosteller, 1955). I would prefer to calibrate
on more recent experiments, but these
have gone out of fashion among psycholo-
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gists, and no recent, more definitive results
appear to be available. I therefore use
Robillard’s data as an expedient, interpret-
ing the resulting calibration as a good indi-
cation of human behavior in situations of
choice rather than a definitive statement.

Robillard set up seven experiments, each
with its own payoff structure, and allocated
groups of ten subjects to each. Each subject
could choose action A or B repeatedly in
100 trials; and the experiments differed in
the probabilities with which unit payoffs oc-
curred. For each experiment, Robillard re-
ported the proportion of A choices in each
sequential block of 10 trials, averaged over
the group of ten subjects (for the data, see
my 1990 paper).

I proceed by allowing “groups of artificial
agents” (computer runs of the algorithm) to
reproduce the equivalent of Robillard’s data
for fixed values of C and v. The artificial
agents produce stochastic sequences of
choices or frequencies of choosing action
A; hence goodness of fit to Robillard’s data
(under a suitable criterion) for fixed param-
eters is a random variable. I calibrate the
parameters C and v by minimizing the ex-
pected sum of errors squared between the
automata-generated frequencies and the
corresponding human frequencies for each
particular experiment, totaled over the seven
experiments. This results in C =31.1 and
v = 0.00. Note immediately that v lies in a
region where asymptotic optimality is far
from guaranteed.

Figures 1 and 2 show the artificial agents’
learning plotted against the human subjects’
in four of the seven experiments, using these
calibrated values. (The other experiments
are similar in fit.) Judged by eye, the results
are encouraging. The automata learn with
roughly the same rate and variation as the
humans in each of the experiments. Further
statistical work (see my 1990 paper) shows
that other data sets besides Robillard’s pro-
duce similar fits, and that six of the seven
Robillard learning trajectories could have
been produced by the calibrated automata
in the sense that each fits well within a
distribution of 100 corresponding computed
automata trajectories. (The outlier experi-
ment, pictured second in Figure 2, has
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close-to-determinate payoffs, something hu-
mans notice faster than the algorithm.)

More convincing than statistical tests-of-
fit are tests of whether the algorithm can
replicate human behavior in quite different
choice problems than those for which it
was calibrated. A different problem is pro-
vided by recent experiments of Richard
Herrnstein et al. (1990) where the distribu-
tion of payoffs to a choice is no longer fixed,
but depends instead on the frequency of
actions taken. These are of interest because
in this frequency-dependent case, human
subjects show a well-documented character-
istic behavior called melioration; their
choices converge not to optimal frequencies
that maximize expected payoff, but to quite
different frequencies that equalize expected
payoffs of each action. In reproducing these
experiments, I found that the calibrated
agents perform similarly to the Herrnstein
subjects; they also meliorate. That our algo-
rithm picks up this characteristic of human
behavior is not surprising. Both human and
artificial agents carry out local search on the
efficacy of choices at the current frequency
of choice; thus in this frequency-dependent
case both deviate from “rational” behavior
in the same way. Findings like this give us
confidence that we can indeed replicate hu-
man behavior for particular decision con-
texts with calibrated learning agents.

III. What About Optimality and
Nash Equilibria?

Let us now put our calibrated agents to
work. First, what they can tell us about the
prospects for human choices converging to
long-run optimality (in our standard, fre-
quency-independent case)? Theoretically,
we know from the zero-calibrated value for
v that optimality may not be reached on all
occasions. But how often might this happen
in practice?

To explore this, I set up a series of com-
puter experiments (see my 1990 paper) de-
signed around an iterated decision problem
with six choices, each with uniformly dis-
tributed payoff from 0.5 to 1.5 times the
choice’s expected value. Expected payoffs
fell off geometrically from action 1 to 6,
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with action 1 the maximal choice. I found
that as long as the best action was set to be
more than 15 percent better than the next
best, the algorithm locked in to it close to
100 percent of the time, in 100 repeated
experiments. But when the best action’s ex-
pected payoff was set at less than 10 percent
or so more than the next best’s, chance
variations in received payoff caused choices
to lock in to less-than-optimal outcomes in
a significant percentage of experiments. Hu-
man choice, if captured by the calibration,
appears to “discover” and exploit the opti-
mal action with high probability, as long as
it is not difficult to discriminate. But beyond
a perceptual threshold, where differences in
alternatives become less pronounced,
nonoptimal outcomes become more likely.

It might be objected that this finding is
merely an artifact of the algorithm I have
chosen. I do not believe so. What is crucial
to the emergence of the optimal action is a
slowing down in speed of convergence, so
that learning has time to ‘“discover” the
action with largest expected value. The data,
not the algorithm, show this slowing down
does not occur. I would thus expect the
finding that long-run optimality depends on
the difficulty of the problem to be validated
under other well-fitting algorithm specifica-
tions. We could of course invoke an imag-
ined discount rate to render lock-in to an
inferior outcome “optimal over time.” But
this “discount rate” would then appear to
be independent of the time between trials,
and I find this argument unpersuasive.

A similar finding carries over to the ques-
tion of whether human agents are likely to
converge to a Nash equilibrium in an iter-
ated game. Think now of our calibrated
agents representing human agents learning
within a normal-form, stage game (see my
1989 paper). The agents can observe their
own actions and random payoffs, but are
not particularly well informed of other play-
ers’ actions and payoff functions. An exam-
ple might be oligopolistic firms choosing
among pricing policies in a decentralized
market on the basis of observed end-of-
quarter profit. Each agent then faces a mul-
tichoice bandit problem as before, and our
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learning context carries over to this wider
problem. Of course, in this case, each agent’s
payoff distribution changes slowly as other
agents change their choice probabilities.

We can represent strategic learning here,
for each agent separately, by the calibrated
stochastic process in equation (1) and apply
asymptotic probabilistic analysis to the re-
sulting stochastic, dynamic model. Our re-
sults then represent human behavior in this
context to the degree that the calibration
captures actual human learning.

For some game-payoff structures, it turns
out, strategies may not converge at all. The
fact that each agent changes his choice
probabilities (strategy profile) as other
agents change theirs may cause strategy
profiles to cycle. In games where learning
does converge, the analysis shows a Nash
outcome is likely but not assured. Nash
requires that each agent converge to best
reply; but with v =0, there may not be
sufficient exploration of strategies, and Nash
is not guaranteed. In practice, as before, the
likelihood of convergence to Nash depends
on the difficulty of discrimination among
the action payoffs.

How might we use calibrated agents to
represent actual human adaptive behavior
in other standard neoclassical models? My
paper in progress with Holland, Palmer,
and Tayler explores convergence to rational
expectations equilibrium using calibrated
agents in an adaptive version of the Lucas
(1978) stock market. We find that the cali-
brated agents learn to buy and sell stock
appropriately, and that the stock price in-
deed converges to small fluctuations around
the rational expectations value. However,
we also find that speculative bubbles and
crashes occur—a hint that under realistic
learning technical analysis may emerge.

IV. Conclusion

I conclude from this exploratory exercise
that we can indeed design artificial learning
agents and calibrate their “rationality” to
replicate human behavior. Not only does
the learning behavior of our calibrated
agents vary in the way human behavior
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varies as payoffs change from experiment to
experiment in this repeated multichoice
context, but it also reproduces two stylized
facts of human learning well-known to psy-
chologists: that with frequency-dependent
payoffs, humans meliorate rather than opti-
mize; and there is a threshold in discrimina-
tion among payoffs below which humans
may lock in to suboptimal choices. Most
usefully perhaps, the calibrated algorithm
has a convenient dynamic representation
that can be inserted into theoretical models.

To the degree that the algorithm repli-
cates human behavior, it indicates that hu-
man learning most often adapts its way to
an optimal steady state or, interactively, to a
Nash outcome. But it also shows that hu-
mans systematically underexplore less-
known alternatives, so that learning may
sometimes lock in to an inferior choice when
payoffs to choices are closely clustered, ran-
dom, and difficult to discriminate among.
Thus the question of whether human learn-
ing adapts its way to standard economic
equilibria depends on the perceptual diffi-
culty of the problem itself.

For choices among actions with initially
unknown, random payoffs, it appears that
behavior does not settle down much before
40 to 100 or more trials. This implies that
there is a characteristic learning time for
human decisions in the economy that de-
pends both on the payoff structure of the
problem and on the frequency of observed
feedback on actions taken. There is also a
time horizon over which the economic envi-
ronment of a decision problem stays rela-
tively constant. For some parts of the econ-
omy, the learning time may be shorter than
the problem time horizon. These would be
at equilibrium—albeit a slowly changing
one. For other parts, learning may take
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place more slowly than the rate at which the
problem shifts. These parts would be always
transient, always tracking changes in their
decision environment, and never at equilib-
rium.
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